A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weakly-supervised learning-based pathology detection and localization in 3D chest CT scans. | LitMetric

Background: Recent advancements in anomaly detection have paved the way for novel radiological reading assistance tools that support the identification of findings, aimed at saving time. The clinical adoption of such applications requires a low rate of false positives while maintaining high sensitivity.

Purpose: In light of recent interest and development in multi pathology identification, we present a novel method, based on a recent contrastive self-supervised approach, for multiple chest-related abnormality identification including low lung density area ("LLDA"), consolidation ("CONS"), nodules ("NOD") and interstitial pattern ("IP"). Our approach alerts radiologists about abnormal regions within a computed tomography (CT) scan by providing 3D localization.

Methods: We introduce a new method for the classification and localization of multiple chest pathologies in 3D Chest CT scans. Our goal is to distinguish four common chest-related abnormalities: "LLDA", "CONS", "NOD", "IP" and "NORMAL". This method is based on a 3D patch-based classifier with a Resnet backbone encoder pretrained leveraging recent contrastive self supervised approach and a fine-tuned classification head. We leverage the SimCLR contrastive framework for pretraining on an unannotated dataset of randomly selected patches and we then fine-tune it on a labeled dataset. During inference, this classifier generates probability maps for each abnormality across the CT volume, which are aggregated to produce a multi-label patient-level prediction. We compare different training strategies, including random initialization, ImageNet weight initialization, frozen SimCLR pretrained weights and fine-tuned SimCLR pretrained weights. Each training strategy is evaluated on a validation set for hyperparameter selection and tested on a test set. Additionally, we explore the fine-tuned SimCLR pretrained classifier for 3D pathology localization and conduct qualitative evaluation.

Results: Validated on 111 chest scans for hyperparameter selection and subsequently tested on 251 chest scans with multi-abnormalities, our method achieves an AUROC of 0.931 (95% confidence interval [CI]: [0.9034, 0.9557], -value < 0.001) and 0.963 (95% CI: [0.952, 0.976], -value < 0.001) in the multi-label and binary (i.e., normal versus abnormal) settings, respectively. Notably, our method surpasses the area under the receiver operating characteristic (AUROC) threshold of 0.9 for two abnormalities: IP (0.974) and LLDA (0.952), while achieving values of 0.853 and 0.791 for NOD and CONS, respectively. Furthermore, our results highlight the superiority of incorporating contrastive pretraining within the patch classifier, outperforming Imagenet pretraining weights and non-pretrained counterparts with uninitialized weights (F1 score = 0.943, 0.792, and 0.677 respectively). Qualitatively, the method achieved a satisfactory 88.8% completeness rate in localization and maintained an 88.3% accuracy rate against false positives.

Conclusions: The proposed method integrates self-supervised learning algorithms for pretraining, utilizes a patch-based approach for 3D pathology localization and develops an aggregation method for multi-label prediction at patient-level. It shows promise in efficiently detecting and localizing multiple anomalies within a single scan.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17302DOI Listing

Publication Analysis

Top Keywords

chest scans
16
simclr pretrained
12
method
8
method based
8
pretrained weights
8
fine-tuned simclr
8
hyperparameter selection
8
pathology localization
8
-value 0001
8
localization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!