Molecular traits of MAPK kinases and the regulatory mechanism of GhMAPKK5 alleviating drought/salt stress in cotton.

Plant Physiol

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.

Published: November 2024

Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into five different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analyses, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531841PMC
http://dx.doi.org/10.1093/plphys/kiae415DOI Listing

Publication Analysis

Top Keywords

mitogen-activated protein
12
protein kinase
12
regulatory mechanism
8
gossypium hirsutum
8
species clustered
8
salt drought
8
stress tolerance
8
stress
5
cotton
5
molecular traits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!