The goal of the Biostatistics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI) has been to ensure that sound study designs and statistical methods are used to meet the overall goals of ADNI. We have supported the creation of a well-validated and well-curated longitudinal database of clinical and biomarker information on ADNI participants and helped to make this accessible and usable for researchers. We have developed a statistical methodology for characterizing the trajectories of clinical and biomarker change for ADNI participants across the spectrum from cognitively normal to dementia, including multivariate patterns and evidence for heterogeneity in cognitive aging. We have applied these methods and adapted them to improve clinical trial design. ADNI-4 will offer us a chance to help extend these efforts to a more diverse cohort with an even richer panel of biomarker data to support better knowledge of and treatment for Alzheimer's disease and related dementias. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) Biostatistics Core provides study design and analytic support to ADNI investigators. Core members develop and apply novel statistical methodology to work with ADNI data and support clinical trial design. The Core contributes to the standardization, validation, and harmonization of biomarker data. The Core serves as a resource to the wider research community to address questions related to the data and study as a whole.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485306 | PMC |
http://dx.doi.org/10.1002/alz.14159 | DOI Listing |
Sci Adv
January 2025
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFJNCI Cancer Spectr
December 2024
Quantitative Health Sciences, Jacksonville, Florida.
Background: Benign breast disease (BBD) increases breast cancer (BC) risk progressively for women diagnosed with non-proliferative (NP) change, proliferative disease without atypia (PDWA), and atypical hyperplasia (AH). Leveraging data from 18,704 women in the Mayo BBD Cohort (1967-2013), we evaluated temporal trends in BBD diagnoses and how they have influenced associated BC risk over four decades.
Methods: BC risk trends associated with BBD were evaluated using standardized incidence ratios (SIRs) and age-period-cohort modeling across four eras-pre-mammogram (1967-1981), pre-core needle biopsy (CNB) (1982-1992), transition to CNB (1993-2001), and CNB era (2002-2013).
J Cancer
January 2025
Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China.
Platinum resistance is a common cause of chemotherapy failure in lung adenocarcinoma (LUAD). Competing endogenous RNAs (ceRNAs), which function by competitively binding to miRNAs, can influence drug response. However, the regulatory mechanisms of ceRNAs underlying chemoresistance in LUAD remain largely unknown.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!