Single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) is used to measure the mass amounts of elements in individual nano and submicron particles. In spICP-TOFMS, element signals can only be recorded as "particles" if they are above the critical value, which is the threshold used to distinguish between particle-derived and background signals. If elements in particles are present in amounts close to or below the critical value, then these elements cannot be quantitatively measured, and the shape of the measured mass distributions will not be accurate. In addition, recorded spICP-TOFMS signal distributions are impacted by measurement uncertainty due to counting statistics inherent to the mass analyzer. Counting noise is most pronounced for elements detected with low signal levels and can lead to systematic biases in the observed element masses and mass ratios from a particle event. In turn, spICP-TOFMS data can lead to incorrect conclusions about element composition and/or size of recorded particles. To better understand how biases and noise can alter the interpretation of data, we employ Monte Carlo simulations to model spICP-TOFMS signals as a function of measurement parameters, such as particle size distribution (PSD), multi-element composition, absolute sensitivities (TofCts g), and measurement noise from ion-counting (Poisson) statistics. Monte Carlo simulations allow for the systematic comparison of known (simulated) element mass distributions to experimental (measured) data. To demonstrate the accuracy of our model in predicting spICP-TOFMS signal structure, we highlight the match between data from in-lab measurements and simulations for the detection of CeO, ferrocerium mischmetal, and bastnaesite particles. Through Monte Carlo simulations, we explore how analyte PSDs and other measurement parameters can lead to the determination of biased particle sizes, particle numbers, element ratios, and multi-element compositions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay00859fDOI Listing

Publication Analysis

Top Keywords

monte carlo
16
carlo simulations
16
mass distributions
8
spicp-tofms signal
8
measurement parameters
8
spicp-tofms
7
mass
6
measurement
5
simulations
5
element
5

Similar Publications

Residence time of particles in indoor surface networks.

J Hazard Mater

January 2025

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, PR China; Faculty of Architecture, The University of Hong Kong, Hong Kong, PR China. Electronic address:

Infectious microbes can spread rapidly from fomites (contaminated surfaces) via hand touch, with prolonged residence time on surfaces increasing transmission risk by extending exposure periods and/or involving more susceptible individuals. Existing studies have focused on decreasing microbial contamination, but not on the need for rapid removal from surface systems. This study introduces residence time as the time that a microbe spends within the surface system.

View Article and Find Full Text PDF

The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Quantitative Evaluation of Multiple Treatment Regimens for Treatment-Resistant Depression.

Int J Neuropsychopharmacol

January 2025

Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.

Objective: This study aims to quantitatively evaluate the efficacy and safety of various treatment regimens for treatment-resistant depression (TRD) across oral, intravenous, and intranasal routes to inform clinical guidelines.

Methods: A systematic review identified randomized controlled trials on TRD, with efficacy measured by changes in the Montgomery-Åsberg Depression Rating Scale (MADRS). We developed pharmacodynamic and covariate models for different administration routes, using Monte Carlo simulations to estimate efficacy distribution.

View Article and Find Full Text PDF

Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!