The development of polymer binders is necessary to meet the growing demands of modern energy storage technologies. While catechol-containing materials are proven successful in silicon anodes, their application in organic batteries remains unexplored. In this contribution, the synthesis of four polymers are described with nearly identical side chain composition but varying backbone structures. The materials are used to investigate the effect of polymer backbone structure on the binding abilities of catechol-containing materials. Comparative analysis with the commonly used polyvinylidene fluoride (PVDF) binder aims to address two critical questions: 1) Can catechol-rich polymers replace PVDF for use in organic cathodes? and 2) Does the choice of polymer backbone affect the performance of the battery?. The investigation reveals that supramolecular interactions, such as π-π stacking and coordination bonding, are pivotal features of catechol binders. Among the catechol-rich polymers, the polyacrylate binder stands out, likely attributed to its high flexibility. Additionally, introducing an oxygen atom into a catechol-rich polynorbornene enhances lithium-ion conductivity and rate performance. Overall, the findings highlight the viability of catechol-containing polymers as organic cathode binders, and that the choice of polymer backbone is a crucial factor for their use as lithium-ion battery binder materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579966 | PMC |
http://dx.doi.org/10.1002/smll.202405118 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Spine Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
The aim of this research was to conduct randomized trials assessing the extent of cement diffusion following robot-assisted percutaneous vertebroplasty (R-PVP) for osteoporotic vertebral compression fractures (OVCF). A total of 96 OVCF patients meeting the inclusion criteria and admitted between January 2023 and November 2023 were included in the study. Among them, 48 patients were assigned to the robotic-assisted PVP group (R-PVP group) and 48 patients were assigned to the traditional PVP group (PVP group).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:
The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill 27599, United States.
Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!