Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Skin aging is influenced by both external environmental factors and intrinsic biological mechanisms. Traditional microsphere implants aim to rejuvenate aging skin through collagen regeneration, yet their non-biodegradability and risk of granuloma formation often limit their effectiveness. In this study, we developed novel, injectable, highly bioactive, and degradable collagen-chitosan double-crosslinked composite microspheres for skin rejuvenation. The microspheres demonstrated excellent injectability, requiring an injection force of only 0.9 N, and significant biodegradability, effectively degraded in solutions containing phosphate buffer, type I collagenase, and pepsin. In addition, the microspheres exhibited excellent biocompatibility and bioactivity, significantly promoting the proliferation, adhesion, and migration of human foreskin fibroblast-1 (HFF-1) cells. In a photoaged mouse skin model, the implantation of microspheres significantly enhanced dermal density and skin elasticity while reducing transepidermal water loss. Importantly, the implant promoted the regeneration of collagen fibers. This study suggests that collagen-chitosan double-crosslinked composite microspheres hold significant potential for skin rejuvenation treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4tb00537f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!