A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable and biodegradable collagen-chitosan microspheres for enhanced skin regeneration. | LitMetric

Injectable and biodegradable collagen-chitosan microspheres for enhanced skin regeneration.

J Mater Chem B

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

Published: September 2024

Skin aging is influenced by both external environmental factors and intrinsic biological mechanisms. Traditional microsphere implants aim to rejuvenate aging skin through collagen regeneration, yet their non-biodegradability and risk of granuloma formation often limit their effectiveness. In this study, we developed novel, injectable, highly bioactive, and degradable collagen-chitosan double-crosslinked composite microspheres for skin rejuvenation. The microspheres demonstrated excellent injectability, requiring an injection force of only 0.9 N, and significant biodegradability, effectively degraded in solutions containing phosphate buffer, type I collagenase, and pepsin. In addition, the microspheres exhibited excellent biocompatibility and bioactivity, significantly promoting the proliferation, adhesion, and migration of human foreskin fibroblast-1 (HFF-1) cells. In a photoaged mouse skin model, the implantation of microspheres significantly enhanced dermal density and skin elasticity while reducing transepidermal water loss. Importantly, the implant promoted the regeneration of collagen fibers. This study suggests that collagen-chitosan double-crosslinked composite microspheres hold significant potential for skin rejuvenation treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb00537fDOI Listing

Publication Analysis

Top Keywords

microspheres enhanced
8
collagen-chitosan double-crosslinked
8
double-crosslinked composite
8
composite microspheres
8
skin rejuvenation
8
skin
7
microspheres
6
injectable biodegradable
4
biodegradable collagen-chitosan
4
collagen-chitosan microspheres
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!