A novel chemiluminescence sensor for alpha-fetoprotein detection based on an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite.

Anal Methods

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.

Published: August 2024

Herein, an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite was prepared and used to build a novel target-triggered "turn on" chemiluminescence (CL) sensor for alpha-fetoprotein (AFP) detection. Magnetic graphene oxide (MGO) was functionalized with the complementary sequence of the AFP aptamer (cDNA), and then MGO-cDNA was linked to aptamer modified luminol (Apt-luminol) through the complementary base pairing effect. The functionalized magnetic graphene oxide (MGO-cDNA/Apt-luminol) was prepared as a specific magnetic separation and signal switch material. ZnONPs-Au@CuMOFs shows excellent catalytic performance and was used as a catalyst for the luminol-HO reaction. AFP will specifically recognize and bind to Apt on MGO-cDNA/Apt-luminol when AFP is present, which causes luminol release and triggers the CL reaction. The released luminol encounters ZnONPs-Au@CuMOFs and produces strong CL intensity. Therefore, a novel target-triggered "turn on" CL method with high selectivity and sensitivity for detecting AFP has been established. The linear range and detection limit were 1.0 × 10-50 ng mL and 4.2 × 10 ng mL, respectively. The sensor also exhibited good selectivity, reproducibility and stability, and was finally used for AFP detection in serum samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay01175aDOI Listing

Publication Analysis

Top Keywords

magnetic graphene
16
graphene oxide
16
chemiluminescence sensor
8
sensor alpha-fetoprotein
8
aptamer-luminol modified
8
modified magnetic
8
oxide copper-based
8
copper-based mof
8
mof composite
8
novel target-triggered
8

Similar Publications

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Antiferromagnetic semimetal terahertz photodetectors enhanced through weak localization.

Nat Commun

January 2025

State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.

Effective detection is critical for terahertz applications, yet it remains hindered by the unclear mechanisms that necessitate a deeper understanding of photosensitive materials with exotic physical phenomena. Here, we investigate the terahertz detection capabilities of the two-dimensional antiferromagnetic semimetal NbFeTe. Our study reveals that the interaction between antiferromagnetic magnetic moments and electron spin induces disordered carriers to hop between localized states, resulting in a nonlinear increase in responsivity as temperature decreases.

View Article and Find Full Text PDF

Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.

View Article and Find Full Text PDF

Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.

View Article and Find Full Text PDF

Magnetic-proximity-induced anomalous hall effect at the EuO/SbTeinterface.

J Phys Condens Matter

December 2024

Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.

Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!