A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hesperetin-7-O-rhamnoglucoside ameliorates dichlorvos-facilitated cardiotoxicity in rats by counteracting ionoregulatory, ion pumps, redox, and lipid homeostasis disruptions. | LitMetric

The contamination of edible agricultural goods with pesticides, including dichlorvos (DVDP), poses a substantial public health risk, promoting severe morbidity and mortality, especially in developing countries. It has been shown that hesperidin (hesperetin-7-O-rhamnoglucoside or Hes-7-RGlc) preserves cytomembrane, redox, and lipid homeostasis; unfortunately, its function on dichlorvos-incited heart damage has not been investigated. This work explored the ameliorative influence of Hes-7-RGlc on DVDP-activated cardiotoxicity. For this end, forty-two rats were randomly appropriated into seven groups (6 rats/group): Control, DVDP alone (8 mg.kg⁻¹day⁻¹), DVDP supplied with either Hes-7-RGlc (50 and 100 mg.kg⁻¹day⁻¹) or the reference medication atropine (0.2 mg.kg⁻¹day⁻¹), and Hes-7-RGlc alone (50 and 10 mg.kg⁻¹day⁻¹) were the seven groups investigated. DVDP was administered orally for seven days, followed by fourteen days of Hes-7-RGlc therapy. Then the rats were euthanized, and their blood and hearts were removed. Hes-7-RGlc chemotherapy substantially (p<0.05) restored DVDP-elicited dynamics in plasma and cardiac/myocardium creatine kinase isoenzyme (CK-MB), major lipids (cholesterol, triacylglycerol, and phospholipids), electrolytes (Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻), and total protein. Hes-7-RGlc remedy decidedly (p<0.05) abolished DDVP-stimulated amplification in the cardiac concentration of H₂O₂, NO and malondialdehyde; annulled DVDP-educed decreases in heart GSH levels, activities of GST, SOD, catalase, and glutathione peroxidase, ion transporters (Na⁺/K⁺-ATPase and Ca²⁺/Mg²⁺-ATPase), ALT, AST, ALP, and LDH-1. Collectively, Hes-7-RGlc can be advocated as a natural supplementary candidate and blocker of DVDP-provoked heart deficits via its capacity to reverse disruptions of electrolytes, ion pumps, redox status, and lipid homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320608PMC
http://dx.doi.org/10.1016/j.toxrep.2024.101698DOI Listing

Publication Analysis

Top Keywords

redox lipid
8
lipid homeostasis
8
hes-7-rglc
6
hesperetin-7-o-rhamnoglucoside ameliorates
4
ameliorates dichlorvos-facilitated
4
dichlorvos-facilitated cardiotoxicity
4
cardiotoxicity rats
4
rats counteracting
4
counteracting ionoregulatory
4
ionoregulatory ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!