Trace elements are the essential mineral nutrients in grassland, however, we still know little about the distributions of trace elements in grassland with long-term grazing exclusion. The contents, stocks, and proportions of iron (Fe), aluminum (Al), manganese (Mn), and boron (B) in green plant-litter-root-soil were evaluated by enclosing for 18, and 39 years inside the fence (F18 and F39) and grazing outside the fence (F0) in Inner Mongolia grassland. The results showed that F18 and F39 decreased the stocks of Fe, Al, and Mn in green plant and root compared to F0 ( < .05), while increased the stocks of them in litter ( < .05). The stock of Fe, Al, and Mn in green plant at F39 was 28.6%, 13.9%, and 39.2% higher than that at F18. The stocks of four trace elements in first layer litter at F39 were increased by 12.7%-52.2% compared to F18, whereas the stocks of them in third layer litter were decreased by 32.2%-42.5%. The F18 obviously increased the stocks of Fe and Mn in soil, especially B ( < .05). While the stocks of these trace elements in soil at F39 were 9.1%-28.0% lower than that at F18, especially B ( < .05). In conclusion, the trace elements were mainly shifted from green plant and root to soil and third layer litter with 18-year grazing exclusion. Compared to 18-year grazing exclusion, the trace elements were shifted from third layer litter and soil to root with 39-year grazing exclusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319846PMC
http://dx.doi.org/10.1002/ece3.70072DOI Listing

Publication Analysis

Top Keywords

trace elements
12
distributions trace
8
long-term grazing
8
grazing exclusion
8
inner mongolia
8
f18 f39
8
elements long-term
4
exclusion semi-arid
4
grassland
4
semi-arid grassland
4

Similar Publications

Backgrounds And Aims: Type 2 diabetes and its complications are assumed to be major public health problems globally. Zinc is one of the elements that play a part in insulin secretion and signaling. Therefore, this study seeks the answer to the following question: "What are the effects of 220 mg zinc sulfate supplementation on the weight, blood pressure, and glycemic control of patients with Type 2 diabetes?".

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Nutritional and functional outcomes in trials of nutrient-stimulated hormone-based therapy-A systematic mapping review.

Obes Rev

January 2025

Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Nutrition, Centre Spécialisé Obésité, Hôpital Européen Georges Pompidou, Paris, France.

Introduction: Currently, trials are investigating the efficacy of nutrient-stimulated hormone-based therapies (NuSHs) in promoting weight loss in people living with overweight and obesity. However, the extent to which nutritional and functional outcomes are evaluated remains uncertain. Thus, we conducted a systematic mapping to assess the presence of nutritional and functional outcomes in randomized controlled trials (RCTs) investigating NuSHs.

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Ways to Measure Metals: From ICP-MS to XRF.

Curr Environ Health Rep

January 2025

School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.

Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!