Multi-Quantifying Maxillofacial Traits via a Demographic Parity-Based AI Model.

BME Front

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

Published: August 2024

The multi-quantification of the distinct individualized maxillofacial traits, that is, quantifying multiple indices, is vital for diagnosis, decision-making, and prognosis of the maxillofacial surgery. While the discrete and demographically disproportionate distributions of the multiple indices restrict the generalization ability of artificial intelligence (AI)-based automatic analysis, this study presents a demographic-parity strategy for AI-based multi-quantification. In the aesthetic-concerning maxillary alveolar basal bone, which requires quantifying a total of 9 indices from length and width dimensional, this study collected a total of 4,000 cone-beam computed tomography (CBCT) sagittal images, and developed a deep learning model composed of a backbone and multiple regression heads with fully shared parameters to intelligently predict these quantitative metrics. Through auditing of the primary generalization result, the sensitive attribute was identified and the dataset was subdivided to train new submodels. Then, submodels trained from respective subsets were ensembled for final generalization. The primary generalization result showed that the AI model underperformed in quantifying major basal bone indices. The sex factor was proved to be the sensitive attribute. The final model was ensembled by the male and female submodels, which yielded equal performance between genders, low error, high consistency, satisfying correlation coefficient, and highly focused attention. The ensemble model exhibited high similarity to clinicians with minor processing time. This work validates that the demographic parity strategy enables the AI algorithm with greater model generalization ability, even for the highly variable traits, which benefits for the appearance-concerning maxillofacial surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319927PMC
http://dx.doi.org/10.34133/bmef.0054DOI Listing

Publication Analysis

Top Keywords

maxillofacial traits
8
multiple indices
8
maxillofacial surgery
8
generalization ability
8
basal bone
8
primary generalization
8
generalization result
8
sensitive attribute
8
model
6
generalization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!