Investigating the impact of exciton-vibration coupling (EC) of molecular aggregates on regulating the excited-state dynamics and controlling room temperature phosphorescence (RTP) emissions is crucial and challenging. We designed and synthesized ArBFO molecules and cultured two crystals with similar molecular packing and completely different luminescent mechanisms from B-form fluorescence to G-form RTP. The mechanism study combining measurement of photophysical properties, time-resolved fluorescence analysis, X-ray diffraction analysis, and theoretical calculations shows that tiny changes in molecular stacking amplify the EC value from B-form to G-form H-aggregates. The larger EC value accelerates the ISC process and suppresses the radiative singlet decay. Meanwhile, the stronger intermolecular interaction restricts non-radiative transitions. All of these facilitate green RTP emission in G-form aggregates. When treated with pressure-heating cycles, the transformation between B-form and G-form aggregates leads to a reversible blue fluorescence/green RTP switch with good reproducibility and photostability. Moreover, their potential in multi-level information encryption and anti-counterfeiting application has been well demonstrated. The results of this research deepen the understanding of the effect of aggregation on the luminescence mechanism and provide a new design guidance for developing smart materials with good performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317904PMC
http://dx.doi.org/10.1039/d4sc02867hDOI Listing

Publication Analysis

Top Keywords

room temperature
8
temperature phosphorescence
8
exciton-vibration coupling
8
b-form g-form
8
g-form aggregates
8
reversible switching
4
switching fluorescence
4
fluorescence room
4
phosphorescence amplified
4
amplified exciton-vibration
4

Similar Publications

Characterization of a maltononaose-producing amylopullulanase from Bacillus aryabhattai W310.

Int J Biol Macromol

December 2024

Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

The recombinated amylopullulanase of PulW310B, pullulanase from Bacillus aryabhattai W310, was characterized. Sequence analysis of PulW310B showed that PulW310B has type I pullulanase structures including its typical region and the conserved regions of glycoside hydrolase family 13. Moreover, PulW310B was predicted to has typical domains of pullulanase and SSF51445 belonging to tansglycosidase.

View Article and Find Full Text PDF

Simple and rapid capillarity-assisted ultra-trace detection of thiram on apple surface with a silver nanoparticles/filter paper SERS substrate.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China. Electronic address:

Thiram is a readily synthesized, cost-effective antimicrobial agent widely used to control diseases in fruits and vegetables. Given the potential health hazards associated with thiram residues and advancements in detection methods, it is crucial to develop a rapid and sensitive technique for detecting these residues on fruit surfaces. Here, we prepared the Ag@filter paper (Ag@FP) surface-enhanced Raman scattering (SERS) substrate in a controlled manner and innovatively developed a capillarity-assisted SERS (CA-SERS) detection method.

View Article and Find Full Text PDF

Design of Chemoresponsive Liquid Crystals Using Metal-Coordinating Polymer Surfaces.

ACS Appl Mater Interfaces

December 2024

Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.

Liquid crystals (LCs), when interfaced with chemically functionalized surfaces, can amplify a range of chemical and physical transformations into optical outputs. While metal cation-binding sites on surfaces have been shown to provide a basis for the design of chemoresponsive LCs, the cations have been found to dissociate from the surfaces and dissolve slowly into LCs, resulting in time-dependent changes in the properties of LC-solid interfaces (which impacts the reliability of devices incorporating such surfaces). Here, we explore the use of surfaces comprising metal-coordinating polymers to minimize the dissolution of metal cations into LCs and characterize the impact of the interfacial environment created by the coordinating polymer on the ordering and time-dependent properties of LCs.

View Article and Find Full Text PDF

Facile Synthesis of Functional Polytrithiocarbonates from Multicomponent Tandem Polymerizations of CS, Thiols, and Alkyl Halides.

J Am Chem Soc

December 2024

Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

Polytrithiocarbonates have attracted significant attention recently because of their good thermal stability, light refractivity, crystallinity, and mechanical properties; however, the exploration of their structures and functionalities has been limited by their synthetic approaches. Multicomponent polymerization featuring simple monomers, mild conditions, diversified product structures, and high efficiency could provide a powerful and versatile tool to synthesize various polytrithiocarbonates from commercially available monomers. Herein, a robust and efficient multicomponent tandem polymerization (MCTP) of CS, dithiols, and alkyl halides was developed in DMF with KCO at room temperature in air to synthesize 12 polytrithiocarbonates with diversified and systematically tuned structures, high molecular weights (s up to 37900 g/mol), and high yields (up to 93%).

View Article and Find Full Text PDF

Two-dimensional Nanosheets by Liquid Metal Exfoliation.

Adv Mater

December 2024

Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!