A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bayesian framework for virtual comparative trials and bioequivalence assessments. | LitMetric

A Bayesian framework for virtual comparative trials and bioequivalence assessments.

Front Pharmacol

Certara UK Limited, Certara Predictive Technologies Division, Sheffield, United Kingdom.

Published: July 2024

Introduction: In virtual bioequivalence (VBE) assessments, pharmacokinetic models informed with data and verified with small clinical trials' data are used to simulate otherwise unfeasibly large trials. Simulated VBE trials are assessed in a frequentist framework as if they were real despite the unlimited number of virtual subjects they can use. This may adequately control consumer risk but imposes unnecessary risks on producers. We propose a fully Bayesian model-integrated VBE assessment framework that circumvents these limitations.

Methods: We illustrate our approach with a case study on a hypothetical paliperidone palmitate (PP) generic long-acting injectable suspension formulation using a validated population pharmacokinetic model published for the reference formulation. BE testing, study power, type I and type II error analyses or their Bayesian equivalents, and safe-space analyses are demonstrated.

Results: The fully Bayesian workflow is more precise than the frequentist workflow. Decisions about bioequivalence and safe space analyses in the two workflows can differ markedly because the Bayesian analyses are more accurate.

Discussion: A Bayesian framework can adequately control consumer risk and minimize producer risk . It rewards data gathering and model integration to make the best use of prior information. The frequentist approach is less precise but faster to compute, and it can still be used as a first step to narrow down the parameter space to explore in safe-space analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319711PMC
http://dx.doi.org/10.3389/fphar.2024.1404619DOI Listing

Publication Analysis

Top Keywords

bayesian framework
8
adequately control
8
control consumer
8
consumer risk
8
fully bayesian
8
safe-space analyses
8
bayesian
6
analyses
5
framework virtual
4
virtual comparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!