Luminescent wood materials are an emerging class of biomass hybrid host materials owing to the hierarchical porous structure and functionalization versatility. The fluorescence properties are largely dependent on exogenous fluorophores, which are, however, often plagued by notorious aggregation effects. In this work, an efficient strategy for the preparation of luminescent transparent wood materials is developed by incorporating tetraphenylethylene-derived aggregation-induced emission (AIE)-active fluorophores during a delignification-backfill transparency process. These wood hybrids showed unexpected luminescence enhancement that significantly increased the fluorescence quantum yield of the fluorophores up to 99%, much higher than that of the fluorophores in other states such as crystalline solids or doped in a polymer substrate. Mechanistic investigations reveal that polymerization of prepolymerized methyl methacrylate in delignified microporous wood frames produces high molecular weight ordered PMMA polymers, resulting in a rigid molecular environment that improves the luminescence efficiency of TPE-based fluorophores at the interfaces of PMMA polymer and cell walls. By confocal laser scanning microscopy (CLSM), this excellent fluorescence staining capability was furthermore utilized to visualize the intrinsic porous network of wood in three dimensions over a large volume with submicrometer resolution, thus providing an alternative approach to the study of structure-function relationships in such wood hybrids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c08138DOI Listing

Publication Analysis

Top Keywords

luminescent transparent
8
wood materials
8
wood hybrids
8
wood
6
fluorophores
5
design construction
4
construction highly
4
highly luminescent
4
transparent woody
4
materials
4

Similar Publications

Near-infrared (NIR) emitters with high two-photon absorption (2PA) cross-sections are of interest to enable imaging in the tissue transparency windows. This study explores the potential of DNA-stabilized silver nanoclusters (Ag -DNAs) as water-soluble two-photon absorbers. We investigate 2PA of four different atomically precise Ag -DNA species with far-red to NIR emission and varying nanocluster and ligand compositions.

View Article and Find Full Text PDF

Lead-Free Perovskite CsAgNaBiInCl Microcrystals for Scattering-Fluorescent Luminescent Solar Concentrators.

ACS Appl Mater Interfaces

December 2024

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany.

In recent years, luminescent solar concentrators (LSCs) have gained a renaissance as a pivotal transparent photovoltaic (PV) for building-integrated photovoltaics (BIPVs). However, most of the studies focused on light-selective LSCs, and less attention was paid to the utilization of the full solar spectrum. In this study, a lead-free microcrystal CsAgNaBiInCl (CANBIC) perovskite phosphor is demonstrated to have bifunctional effects of luminescent down-shifting (LDS) and light scattering for the fabrication of LSCs, realizing light response from ultraviolet (UV) to NIR regions by an edge-mounted Si solar cell.

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

Laser-driven projection displays face a critical challenge in developing laser-excitable and high-performance narrowband green emitters. Herein, new AlO-LaMgAlO: Mn (AlO-LMA: Mn) transparent composite ceramics are reported via high-temperature vacuum sintering, which produces a high-color-purity (95.4%) green emission with full width at half maximum of 24 nm and superior thermal and moisture and laser irradiation stability.

View Article and Find Full Text PDF

Two dimensional covalent organic framework (2D COF) films based on triphenylamine are considered to be promising electrochromic and energy-storage materials owing to their interlayer π-π electron delocalization, one-dimensional (1D) nanopores, and stable chemical structures. Triphenylamine-based 2D COF electrochromic films, nevertheless, rarely exhibit transparency and high optical contrast, which severely limited the scope of their application. In this work, two directly grown triphenylamine-based polyimide 2D COF films, TAPA-PMDA and TAPA-NTCDA PI COF, were prepared through solvothermal technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!