AI Article Synopsis

  • Plants create complex natural products that are located in specific cell types rather than being evenly distributed throughout their tissues.
  • Researchers have developed a plate-based single-cell mass spectrometry method that allows for the identification and quantification of 16 different natural products in individual plant cells from different tissues like leaf, root, and petal.
  • The findings reveal that natural products have distinct localization patterns in various tissues and can exist in highly variable concentrations among different cells, often exceeding 100 mM in some cases.

Article Abstract

Plants produce an extraordinary array of natural products (specialized metabolites). Notably, these structurally complex molecules are not evenly distributed throughout plant tissues but are instead synthesized and stored in specific cell types. Elucidating both the biosynthesis and function of natural products would be greatly facilitated by tracking the location of these metabolites at the cell-level resolution. However, detection, identification, and quantification of metabolites in single cells, particularly from plants, have remained challenging. Here, we show that we can definitively identify and quantify the concentrations of 16 molecules from four classes of natural products in individual cells of leaf, root, and petal of the medicinal plant using a plate-based single-cell mass spectrometry method. We show that identical natural products show substantially different patterns of cell-type localization in different tissues. Moreover, we show that natural products are often found in a wide range of concentrations across a population of cells, with some natural products at concentrations of over 100 mM per cell. This single-cell mass spectrometry method provides a highly resolved picture of plant natural product biosynthesis partitioning at a cell-specific resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363012PMC
http://dx.doi.org/10.1021/jacs.4c06336DOI Listing

Publication Analysis

Top Keywords

natural products
24
single-cell mass
12
mass spectrometry
12
highly resolved
8
natural
8
natural product
8
product biosynthesis
8
biosynthesis partitioning
8
spectrometry method
8
products
6

Similar Publications

This study investigated severity, course and patterns of fatigue surrounding subcutaneous biological disease-modifying antirheumatic drug (bDMARD) injection in inflammatory rheumatic disease (IRD) patients using ecological momentary assessments and investigated self-reported adverse drug reactions (ADRs). In this prospective cohort study, IRD patients completed fatigue severity numeric rating scales (0-10) in web-based ecological momentary assessments in three waves of five days surrounding bDMARD injection. The course of fatigue was measured by the change in fatigue from pre-dosing to post-dosing scores and was classified as: worsening, improving or no clinically relevant change.

View Article and Find Full Text PDF

Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.

View Article and Find Full Text PDF

Neuroprotective Indole Alkaloids from the Soil-Derived Fungus sp. XZ8.

J Nat Prod

January 2025

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!