Objective: The study aimed to explore the role of the Wnt/β-catenin signaling pathway in pancreatic cancer progression and chemoresistance, with a focus on identifying specific factors that distinguish between normal and tumor cells, thereby offering potential therapeutic targets.
Materials And Methods: We analyzed levels of total and phosphorylated eukaryotic translation initiation factor 4E (eIF4E) and β-catenin in pancreatic cancer and normal pancreatic tissues. Functional assays were used to assess the impact of eIF4E phosphorylation on β-catenin signaling, cell proliferation, and chemoresistance, with MNK kinase involvement determined through gene depletion studies. The MNK kinase inhibitor eFT508 was evaluated for its effects on eIF4E phosphorylation, β-catenin activation, and cell viability in both and models of pancreatic cancer.
Results: Both total and phosphorylated eIF4E, along with β-catenin, were significantly elevated in pancreatic cancer tissues compared to normal tissues. Phosphorylation of eIF4E at serine 209 was shown to activate β-catenin signaling, enhance cell proliferation, and contribute to chemoresistance in pancreatic cancer. Importantly, these effects were dependent on MNK kinase activity. Depletion of eIF4E reduced cell viability in both pancreatic cancer and normal cells, while depletion of MNK selectively decreased viability in pancreatic cancer cells. Treatment with eFT508 effectively inhibited eIF4E phosphorylation, suppressed β-catenin activation, and reduced pancreatic cancer cell growth and survival and , with minimal impact on normal cells.
Unlabelled: The MNK-eIF4E-β-catenin axis plays a critical role in pancreatic cancer progression and chemoresistance, distinguishing pancreatic cancer cells from normal cells. Targeting MNK kinases with inhibitors like eFT508 presents a promising therapeutic strategy for pancreatic cancer, with potential for selective efficacy and reduced toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08923973.2024.2391462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!