Feline primary hypertrophic cardiomyopathy (HCM) is an intrinsic myocardial disease characterized by concentric hypertrophy of the left ventricle. In the present study, we investigated the microRNA-mRNA regulatory network in feline myocardial tissue affected by primary (HCMI) and secondary HCM (HCMII). MRNA expression levels of sarcomeric genes, including, TNNT2, TNNI3, MYH7, MYBPC3, TPM1 and ACTC1 were assessed in the FFPE myocardial tissues. FFPE tissues from healthy cats were sequenced by the NGS, to explore, in the entire non-deposited miRNome, the expression level of microRNAs targeting the complementary sequences of selected sarcomeric mRNAs. The sarcomeric genes TNNT2, MYH7, MYBPC3 and TPM1 showed a statistically significant upregulation in HCMI compared to HCMII (p < .01), except ACTC1 which was downregulated (p < .01); TNNI3 showed no statistically significant difference. In HCMII miR-122-5p, miR-338-3p, miR-484, miR-370-3p, miR-92b-3p, miR-375 and miR-370-3p showed a significant upregulation (p < .01) compared to control. The exception was miR-30a-5p which showed downregulation. Worthy of note is the 4-fold higher expression of miR-370-3p, a key regulator of MYBPC3, in HMCI compared to HMCII. This research does not solve the aetiological mystery of HCM, but it may help to find a way to help diagnose and define the prognosis of HCM in cats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574647 | PMC |
http://dx.doi.org/10.1111/iep.12514 | DOI Listing |
Rev Cardiovasc Med
January 2025
Department of Cardiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, 610072 Chengdu, Sichuan, China.
Background: There is a shortage of patients with hypertrophic cardiomyopathy (HCM) with concurrent coronary artery disease (CAD), and the influence of CAD on the prognosis of patients with HCM is uncertain. This real-world cohort study was conducted to evaluate the prognosis of patients with patients with CAD.
Methods: This cohort study of patients with HCM was conducted from May 2003 to September 2021.
World J Cardiol
January 2025
Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy. It is one of the chief causes of sudden cardiac death in younger people and athletes. Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Clalit Research Institute, Clalit Health Services, Ramat Gan, Israel (R.G., O.I., S.B.-S.).
Heart Rhythm
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory). Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!