Background: Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated.
Methods: In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo.
Results: In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling.
Conclusions: Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323356 | PMC |
http://dx.doi.org/10.1186/s10020-024-00889-6 | DOI Listing |
Mol Med
December 2024
Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin er Road, Shanghai, 200025, China.
Background: Glaucoma is a group of heterogeneous neurodegenerative diseases with abnormal energy metabolism and imbalanced neuroinflammation in the retina. Thioredoxin-interacting protein (TXNIP) is involved in glucose and lipid metabolism, and associated with oxidative stress and inflammation, however, not known whether to be involved in glaucoma neuropathy and its underlying mechanisms.
Methods: To establish the chronic ocular hypertension (COH) mice model.
Biochimie
December 2024
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.
View Article and Find Full Text PDFComput Biol Med
December 2024
Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. Electronic address:
Jiaogulan (Gynostemma pentaphyllum) is a traditional herb with potential antidiabetic properties. This study investigated the underlying mechanisms of these properties by analysing plasma protein profiles in type 2 diabetes patients. A total of 42 participants were divided into three groups, each comprising 14 individuals: healthy controls (N), untreated type 2 diabetes patients (DM), and Jiaogulan-treated type 2 diabetes patients (DMJ).
View Article and Find Full Text PDFAACE Clin Case Rep
September 2024
Department of Medicine, Suburban Hospital, Johns Hopkins Medicine, Bethesda, Maryland.
Background/objective: Calcium channel blockers, when taken in overdose quantities, can cause hyperglycemia requiring so-called hyperinsulinemic-euglycemic therapy. The objective of this report was to describe a patient with calcium channel blocker toxicity resulting from overdose of amlodipine.
Case Report: A 74-year-old man presented with a fall and loss of consciousness.
Sci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!