AI Article Synopsis

  • Ecological water replenishment significantly enhances groundwater quality and water sources, as shown by monitoring data from the Jialu River between 2015 and 2019.
  • The study utilized various analytical methods, indicating a decrease in total dissolved solids (TDS) and a shift in dominant chemical types in groundwater.
  • Overall, the research highlights the positive impact of ecological water replenishment on groundwater chemistry, suggesting improved sustainability and water quality in the region.

Article Abstract

Ecological water replenishment is an important measure for conserving water sources and improving the water environment. To explore the evolution and causes of groundwater chemistry after ecological water replenishment in the Jialu River, this study utilized groundwater monitoring data from 2015 to 2019 following ecological water replenishment. Various methods, including Piper's trilinear diagram, Gibbs diagram, principal component analysis, and ion ratio analysis, were employed for research purposes. The results indicate that (1) since the implementation of ecological water replenishment in the Jialu River, there has been a general downwards trend in total dissolved solids (TDS) in groundwater. The dominant cation in groundwater is Ca, whereas HCO is the dominant anion. The concentration of cations in groundwater has generally decreased, with noticeable reductions in SO and Cl concentrations in the upper reaches of the recharge river contributing to improved groundwater quality. (2) A comparison with 2015 reveals a gradual transition at sampling points from chemical types such as HCO-Ca·Mg and HCO·Cl-Ca·Mg to an ecological water replenishment chemical type (HCO-Ca).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322388PMC
http://dx.doi.org/10.1038/s41598-024-69704-wDOI Listing

Publication Analysis

Top Keywords

ecological water
24
water replenishment
24
replenishment jialu
12
jialu river
12
evolution groundwater
8
groundwater chemistry
8
chemistry ecological
8
water
8
groundwater
7
ecological
6

Similar Publications

Solar-Driven Nanofluidic Ion Regulation for Fractional Salt Crystallization and Reutilization.

ACS Nano

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

Emerging mercury-free ultraviolet (UV) sources, such as krypton chloride excimer (KrCl*) lamps and UV light emitting diodes (UV-LEDs), emit diverse wavelengths with distinct inactivation mechanisms. The combined application has the potential to improve disinfection effectiveness through synergism. In this study, a mini-fluidic photoreaction system equipped with a KrCl* lamp (222 nm) and a strip of UV-LEDs (275 nm) was developed, which could individually/simultaneously deliver accurate UV radiation(s) at 222 nm (0.

View Article and Find Full Text PDF

When ingested as part of a blood meal, the antiparasitic drug ivermectin kills mosquitoes, making it a candidate for mass drug administration (MDA) in humans and livestock to reduce malaria transmission. When administered to livestock, most ivermectin is excreted unmetabolized in the dung within 5 days post administration. Presence of ivermectin, has been shown to adversely affect dung colonizers and dung degradation in temperate settings; however, those findings may not apply to, tropical environment, where ivermectin MDA against malaria would occur.

View Article and Find Full Text PDF

Quantifying form resistance is essential for estimating summer low and bankfull flow from stream survey channel morphology.

Geomorphology (Amst)

December 2024

Retired: U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35th Street, Corvallis, OR 97333, USA.

Reliable estimates of low flow and flood discharge at ungaged locations are required for evaluating stream flow alteration, designing culverts and stream crossings, and interpreting regional surveys of habitat and biotic condition. Very few stream gaging stations are located on small, remote streams, which typically have complex channel morphology. Adequate gaging is also lacking on larger streams that are remote, smaller than those typically gaged, or have channel morphology not conducive to installation of gages.

View Article and Find Full Text PDF

Green synthesis of low-cost graphene oxide-nano zerovalent iron composite from solid waste for photocatalytic removal of antibiotics.

iScience

December 2024

Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India.

This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!