JR5558 mice are a reliable model to investigate subretinal fibrosis.

Sci Rep

Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.

Published: August 2024

Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis. Fundus and optical coherence tomography (OCT) imaging was used to non-invasively track lesions. Lesion number and area were quantified with ImageJ. Retinal sections, wholemounts and Western blots were used to characterise alterations. Subretinal lesions expand between 4 and 8 weeks and become established in size and location around 12 weeks. Subretinal lesions were confirmed to be fibrotic, including various cell populations involved in fibrosis development. Müller cell processes extended from superficial retina into subretinal lesions at 8 weeks. Western blotting revealed increases in fibronectin (4 wk and 8 wk, p < 0.001), CTGF (20 wks, p < 0.001), MMP2 (12 wks and 20 wks p < 0.05), αSMA (12 wks and 20 wks p < 0.05) and GFAP (8 wk and 12 wk, p ≤ 0.01), consistent with our immunofluorescence results. Intravitreal injection of Aflibercept reduced subretinal lesion growth. Our study provides evidence JR5558 mice have subretinal fibrotic lesions that grow between 4 and 8 weeks and confirms this line to be a good model to study subretinal fibrosis development and assess treatment options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322289PMC
http://dx.doi.org/10.1038/s41598-024-66068-zDOI Listing

Publication Analysis

Top Keywords

subretinal fibrosis
16
subretinal lesions
12
jr5558 mice
8
subretinal
7
fibrosis
6
mice reliable
4
reliable model
4
model investigate
4
investigate subretinal
4
fibrosis subretinal
4

Similar Publications

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

Ribonucleoprotein (RNP)-based CRISPR/Cas9 genome editing holds great potential for the treatment of choroidal neovascularization (CNV), which however, is challenged by the lack of efficient cytosolic protein delivery tools. Herein, reversibly-phosphorylated pro-proteins (P-proteins) with conjugated adenosine triphosphate (ATP) tags are engineered and coupled with a membrane-penetrating, guanidine-enriched, α-helical polypeptide (GP) to mediate robust and universal cytosolic delivery. GP forms salt-stable nanocomplexes (NCs) with P-proteins via electrostatic interaction and salt bridging, and the helix-assisted, strong membrane activities of GP enabled efficient cellular internalization and endolysosomal escape of NCs.

View Article and Find Full Text PDF

Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases.

Graefes Arch Clin Exp Ophthalmol

December 2024

Doheny Eye Institute, University of California, Los Angeles, 150 N. Orange Grove Blvd, Suite 232, Pasadena, CA, USA.

Anti-vascular endothelial growth factor (VEGF) therapies have transformed the treatment of retinal diseases. However, VEGF signaling is only one component of the complex, multifactorial pathophysiology of retinal diseases, and many patients have residual disease activity despite ongoing anti-VEGF treatment. The angiopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor receptor-2 (Ang/Tie2) signaling pathway is critical to endothelial cell homeostasis, survival, integrity, and vascular stability.

View Article and Find Full Text PDF

Assessment of distributions and gender difference in adverse events related to faricimab: a real-world study based on FDA adverse event reporting system.

Expert Opin Drug Saf

December 2024

Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Ophthalmology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China.

Background: Faricimab is a novel bispecific antibody drug for treating retinal disease. We aim to study the adverse events of faricimab based on the FDA Adverse Event Reporting System (FAERS) database.

Research Design And Methods: The FAERS data from 2020 to 2024 was extracted to conduct disproportionality analysis.

View Article and Find Full Text PDF

Background: To evaluate factors affecting visual acuity prognosis in patients with neovascular age-related macular degeneration (nAMD) following anti-vascular endothelial growth factor (anti-VEGF) therapy via intravitreal injection and to identify baseline risk factors for subretinal fibrosis (SF).

Methods: A retrospective study of 64 nAMD eyes treated with intravitreal anti-VEGF treatment over 12 months of follow-up was conducted. Demographic and optical coherence tomography characteristics at baseline were recorded to explore the relevant factors affecting visual acuity outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!