AI Article Synopsis

  • Researchers are exploring reduced-dose schedules of pneumococcal conjugate vaccines (PCV) to lower costs and improve accessibility in low and middle-income countries.
  • Initial findings indicate that after vaccination at 12 months, memory B cell responses were stronger in those who received a 1 + 1 schedule compared to a 0 + 1 schedule, as well as for PCV13 compared to PCV10.
  • The study highlights the need for further research on the long-term protective effects of B cells against pneumococcal disease to inform immunization program decisions.

Article Abstract

The use of pneumococcal conjugate vaccine (PCV) schedules with fewer doses are being considered to reduce costs and improve access, particularly in low- and middle-income countries. While several studies have assessed their immunogenicity, there are limited data on their potential for long-term immune protection, as assessed by pneumococcal serotype-specific memory B cell (B) responses. This current study reports secondary outcome data that aims to compare B responses following reduced-dose (0 + 1 and 1 + 1) schedules of PCV10 and PCV13 in Vietnamese infants from our randomised-controlled trial (trial registration number NCT03098628). Following vaccination at 12 months of age, B levels for most serotypes peaked seven days post-vaccination and were higher in magnitude for the 1 + 1 than 0 + 1 schedules and for PCV13 than PCV10. Furthermore, B did not wane as rapidly as IgG levels by 24 months of age. Further studies are needed to assess the use of B as markers of long-term protection against pneumococcal carriage and disease, which is crucial to generate data for immunisation program decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322157PMC
http://dx.doi.org/10.1038/s41467-024-51413-7DOI Listing

Publication Analysis

Top Keywords

memory cell
8
cell responses
8
pneumococcal conjugate
8
conjugate vaccine
8
schedules fewer
8
fewer doses
8
randomised-controlled trial
8
months age
8
responses induced
4
pneumococcal
4

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Transcriptional determinants of goal-directed learning and representational drift in the parahippocampal cortex.

Cell Rep

January 2025

Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:

Task learning involves learning associations between stimuli and outcomes and storing these relationships in memory. While this information can be reliably decoded from population activity, individual neurons encoding this representation can drift over time. The circuit or molecular mechanisms underlying this drift and its role in learning are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!