Determination of biomarkers of chlorine exposure from biological samples: a review of analysis techniques.

Biomarkers

Department of Chemistry, Biochemistry, & Physics, South Dakota State University, Brookings, South Dakota, USA.

Published: September 2024

AI Article Synopsis

  • Chlorine gas is highly toxic, leading to serious health issues like respiratory failure and could be fatal; monitoring exposure is essential for treatment and preventive measures.
  • The review covers 30 years of research on biomarkers for chlorine exposure, highlighting key biomarkers and analysis techniques, like chromatographic separation with mass spectrometry.
  • The study stresses the importance of ongoing research and thorough evaluation of analysis methods to enhance the effectiveness of monitoring and improve health outcomes for individuals exposed to chlorine.

Article Abstract

Chlorine gas can be toxic when inhaled or absorbed at high concentrations through the skin. It can cause pulmonary edema, pulmonary inflammation, respiratory failure, and potentially death. Monitoring chlorine exposure helps in determining treatment regimens and may inform safeguards, such as personal protective equipment and ventilation systems. Therefore, verification of chlorine exposure is crucial to protecting human health. This has led to identification of multiple biomarkers of Cl2 exposure with associated innovations in methods of analysis to monitor these markers. In this review of the last 30 years of literature, biomarkers and associated methods of detection for the determination of chlorine exposure from biological samples are detailed and critically evaluated. From the 36 included studies, the most useful biomarkers for Cl2 exposure include tyrosine adducts, chlorohydrin, chloro-fatty-acids, chloro-fatty-aldehydes, and chloro-fatty-alcohols. The most common sample preparation methods for these markers are hydrolysis and extraction and the most common analysis techniques are chromatographic separation with mass spectrometric detection. The findings of this review emphasize the need for continued research into biomarkers and stronger evaluation of proposed analytical methods, including validation, to allow more appropriate comparison, which will ultimately improve patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1354750X.2024.2390563DOI Listing

Publication Analysis

Top Keywords

chlorine exposure
16
exposure biological
8
biological samples
8
analysis techniques
8
biomarkers cl2
8
cl2 exposure
8
exposure
6
chlorine
5
determination biomarkers
4
biomarkers chlorine
4

Similar Publications

Introduction: Cephalosporins can trigger hypersensitivity reactions in certain individuals. Consequently, strict regulations restrict the production of non-beta-lactam substances during or after cephalosporin manufacturing. Dry chlorine dioxide gas (dClO), together with ultra-performance liquid chromatography Mass spectrometry/mass spectrometry (UPLC-MS/MS) detection methods, has emerged as a promising method for decontaminating cephalosporin compounds.

View Article and Find Full Text PDF

Short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are environmental contaminants known for their persistence and bioaccumulation in fatty tissues. SCCPs are considered potential carcinogens and endocrine disruptors, with similar effects expected for MCCPs. This study investigated the body burden of SCCPs and MCCPs in residents of two regions of the Czech Republic with different levels of industrial pollution.

View Article and Find Full Text PDF

D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention.

J Control Release

December 2024

School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:

Article Synopsis
  • New multipurpose prevention technologies for women prioritize reducing HIV risks and preventing unwanted pregnancies, promoting greater sexual health choices.
  • A novel long-acting injectable platform combines the HIV drug MIV-150 and the contraceptive etonogestrel using a specially designed D-peptide that forms a drug-releasing hydrogel after injection.
  • The technology shows promising biostability, low toxicity, and sustained delivery of both drugs in animal models for nearly 50 days, indicating its potential for effective long-term use.
View Article and Find Full Text PDF

Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells.

Small

December 2024

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China.

Incorporating chlorine into the SnO electron transport layer (ETL) has proven effective in enhancing the interfacial contact between SnO and perovskite in perovskite solar cells (PSCs). However, previous studies have primarily focused on the role of chlorine in passivating surface trap defects in SnO, without considering its influence on the buried interface. Here, hydrochloric acid (HCl) is introduced as a chlorine source into commercial SnO to form Cl-capped SnO (Cl-SnO) ETL, aiming to optimize the buried interface of the PSC.

View Article and Find Full Text PDF

Contamination of chars with dioxin-like polychlorinated biphenyls (dl-PCB) significantly limits their use and hinders their deployment in the circular bioeconomy, specifically in applications that may lead to dietary exposure. Here, for the first time, we review the levels of contamination of chars produced from pyrolysis and hydrothermal carbonisation (HTC) with dl-PCB congeners. We conduct a detailed and critical examination of the role played by the processing parameters, such as temperature and residence time, and the reaction mechanisms, to detoxify the biomass under an oxygen-free atmosphere during its valorisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!