AI Article Synopsis

  • Synthetic data can help share sensitive biomedical information while maintaining individual privacy, and Differential Privacy (DP) is a key technique for achieving this balance.
  • This study examines the reliability of statistical tests for identifying group differences in DP-synthetic data, focusing on Type I (false discoveries) and Type II (missing real discoveries) errors across various tests.
  • Results show that many tests had inflated Type I errors, especially at low significance levels, highlighting the need for caution in using DP-synthetic data, though one method achieved valid Type I error rates with sufficient original data and privacy budget.

Article Abstract

Background: Synthetic data have been proposed as a solution for sharing anonymized versions of sensitive biomedical datasets. Ideally, synthetic data should preserve the structure and statistical properties of the original data, while protecting the privacy of the individual subjects. Differential Privacy (DP) is currently considered the gold standard approach for balancing this trade-off.

Objectives: The aim of this study is to investigate how trustworthy are group differences discovered by independent sample tests from DP-synthetic data. The evaluation is carried out in terms of the tests' Type I and Type II errors. With the former, we can quantify the tests' validity, i.e., whether the probability of false discoveries is indeed below the significance level, and the latter indicates the tests' power in making real discoveries.

Methods: We evaluate the Mann-Whitney U test, Student's -test, chi-squared test, and median test on DP-synthetic data. The private synthetic datasets are generated from real-world data, including a prostate cancer dataset ( = 500) and a cardiovascular dataset ( = 70,000), as well as on bivariate and multivariate simulated data. Five different DP-synthetic data generation methods are evaluated, including two basic DP histogram release methods and MWEM, Private-PGM, and DP GAN algorithms.

Conclusion: A large portion of the evaluation results expressed dramatically inflated Type I errors, especially at levels of  ≤ 1. This result calls for caution when releasing and analyzing DP-synthetic data: low -values may be obtained in statistical tests simply as a byproduct of the noise added to protect privacy. A DP Smoothed Histogram-based synthetic data generation method was shown to produce valid Type I error for all privacy levels tested but required a large original dataset size and a modest privacy budget ( ≥ 5) in order to have reasonable Type II error levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495942PMC
http://dx.doi.org/10.1055/a-2385-1355DOI Listing

Publication Analysis

Top Keywords

synthetic data
16
dp-synthetic data
16
data
11
private synthetic
8
type errors
8
data generation
8
type error
8
synthetic
6
privacy
5
type
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!