A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new strategy for Astragaloside IV in the treatment of diabetic kidney disease: Analyzing the regulation of ferroptosis and mitochondrial function of renal tubular epithelial cells. | LitMetric

A new strategy for Astragaloside IV in the treatment of diabetic kidney disease: Analyzing the regulation of ferroptosis and mitochondrial function of renal tubular epithelial cells.

Int Immunopharmacol

Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China. Electronic address:

Published: November 2024

In China, the Astragalus membranaceus root is used to treat chronic kidney disease. Astragaloside IV (AS-IV), the primary bioactive compound, exhibits anti-inflammatory and antioxidative properties; however, its renoprotective mechanism in diabetic kidney disease (DKD) remains unclear. The study aimed to investigate the protective effects of AS-IV on DKD revealing the underlying mechanisms. We established an early diabetic rat model by feeding a high-fat diet and administering low-dose streptozotocin. Twelve weeks post-treatment, renal function was evaluated using functional assays, histological analyses, immunohistochemistry, western blotting, and transmission electron microscopy. HK-2 cells exposed to high glucose conditions were used to examine the effect of AS-IV on oxidative stress, iron levels, reactive oxygen species (ROS), and lipid peroxidation. Network pharmacology, proteomics, molecular docking, and molecular dynamics simulation techniques were employed to elucidate the role of AS-IV in DKD. The results revealed that AS-IV effectively enhanced renal function and mitigated disease pathology, oxidative stress, and ferroptosis markers in DKD rats. In HK-2 cells, AS-IV lowered the levels of lipid peroxides, Fe, and glutathione, indicating the repair of ferroptosis-related mitochondrial damage. AS-IV reduced mitochondrial ROS while enhancing mitochondrial membrane potential and ATP production, indicating its role in combating mitochondrial dysfunction. Overall, in silico analyses revealed that AS-IV interacts with HMOX1, FTH1, and TFR1 proteins, supporting its efficacy in alleviating renal injury by targeting mitochondrial dysfunction and ferroptosis. AS-IV may play a renoprotective role by regulating mitochondrial dysfunction and inhibiting. HMOX1/FTH1/TFR1-induced ferroptosis. Accordingly, AS-IV could be developed for the clinical treatment of DKD-related renal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112794DOI Listing

Publication Analysis

Top Keywords

kidney disease
12
mitochondrial dysfunction
12
as-iv
10
diabetic kidney
8
as-iv dkd
8
renal function
8
hk-2 cells
8
oxidative stress
8
revealed as-iv
8
renal injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!