Selective capture of PM by urban trees: The role of leaf wax composition and physiological traits in air quality enhancement.

J Hazard Mater

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:

Published: October 2024

Human health risks from particles with a diameter of less than 2.5 µm (PM) highlight the role of urban trees as bio-filters in air pollution control. However, whether the size and composition of particles captured by various tree species differ or not remain unclear. This study investigates how leaf attributes affect the capture of PM, which can penetrate deep into the lungs and pose significant health risks. Using a self-developed particulate matter (PM) resuspension chamber and single-particle aerosol mass spectrometer, we measured the size distribution and mass spectra of particles captured by ten tree species. Notably, Cinnamomum camphora (L.) J.Presl and Osmanthus fragrans Lour. are more effective at capturing particles under 1 µm, which are most harmful because they can reach the alveoli, whereas Ginkgo biloba L. and Platanus × acerifolia (Aiton) Willd. tend to capture larger particles, up to 1.6 µm, which are prone to being trapped in the upper respiratory tract. Leaf physiological traits such as stomatal conductance and water potential significantly enhance the capture of larger particles. The Adaptive Resonance Theory neural network (ART-2a) algorithm classified a large number of single particles to determine their composition. Results indicate distinct inter-species variations in chemical composition of particles captured by leaves. Moreover, we identified how specific leaf wax compositions-beyond the known sticky nature of hydrophobic waxes-contribute to particle adhesion, particularly highlighting the roles of fatty acids and alkanes in adhering particles rich in organic carbon and heavy metals, respectively. This research advances our understanding by linking leaf physiological and wax characteristics to the selective capture of PM, providing actionable insights for urban forestry management. The detailed exploration of particle size and composition, tied to specific tree species, enriches the current literature by quantifying how and why different species contribute variably to air quality improvement. This adds a crucial layer of specificity to the general knowledge that trees serve as bio-filters, offering a refined strategy for planting urban trees based on their particulate capture profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135428DOI Listing

Publication Analysis

Top Keywords

urban trees
12
particles captured
12
tree species
12
particles
9
selective capture
8
leaf wax
8
physiological traits
8
air quality
8
health risks
8
size composition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!