Commercial laying hen housing is shifting from traditional cages to non-cage housing systems, such as the aviary, which has gained popularity due to potential for more species-typical behavior. However, birds housed in aviaries may have difficulties moving through the vertical tiers of the system leading to health problems such as keel bone fracture (KBF). One possible way to improve movement is to add ramps into an aviary system, allowing hens to walk between tiers rather than jump or fly. The objective of this study was to evaluate the impact of adding ramps to rearing and laying aviaries on bird health, production, and movement across vertical tiers of the aviary. Lohmann Selected Leghorn pullets were raised in 2 treatments: 4 pens (600 birds/pen) were raised with wire mesh ramps to aid movement between aviary tiers (RR) and 4 pens (600 birds/pen) were raised without ramps (RO). At 17 wk of age (WOA), birds were moved to the laying facility, in which 16 aviary pens with 225 birds/pen were populated. Half the pens (n = 8) were supplemented with wire mesh ramps (LR) and the other half were not (LO). Within each laying treatment group, 4 pens were populated with RR hens and 4 pens were populated with RO hens, creating 4 treatment combinations (RRLR, RRLO, ROLR, ROLO). From each pen, 15 focal hens were selected for radiographic imaging of their keel bones taken at 21, 36, 45, and 60 WOA and the images were subsequently scored for KBF severity. Focal hens were also scored for feather condition and footpad quality at 36 and 60 WOA using a standardized welfare assessment protocol. The number of downward transitions among aviary areas and falls were recorded at 19 to 20 and 30 to 31 WOA. Data were analyzed using (generalized) linear mixed models in R software. When ramps were available, they were used in most of the observed downward transitions (79% in ROLR and 86% in RRLR). Hens who received ramps in lay (i.e., RRLR and ROLR) showed more transitions immediately after lights on compared to midday or dusk phases (p < 0.001), performed more transitions from the first aviary tier compared to nest or top tier (p = 0.013) and had lower KBF severity than those who did not receive ramps in the laying aviaries (ROLO, RRLO; p < 0.001). At 60 WOA, hens in the RRLR treatment had greater feather coverage than those in ROLR and RRLO treatments (p < 0.001). Birds in the RRLR treatment had better foot health overall than those in treatments without ramps in lay (p = 0.018). Providing ramps to hens in aviaries appeared to be the preferred means of transitioning between aviary tiers though had positive effects on welfare parameters such as food health, feather coverage, and KBF severity, without negative impacts on production. Benefits were seen primarily when ramps were provided in lay, though their installation in rearing provided evidence of easier adaptation to the laying barn. Our study supports providing ramps throughout the lifetime of the bird to accommodate hens' preferred means of moving vertically in aviaries and deliver consequent benefits to health and welfare.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372577 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.104101 | DOI Listing |
JAMA Intern Med
January 2025
Virta Health, Denver, Colorado.
bioRxiv
January 2025
Centre for Vision Research, Centre for Integrative & Applied Neuroscience, Vision: Science to Applications Program, Connected Minds, Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.
View Article and Find Full Text PDFbioRxiv
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
Amylin analogs, including potential anti-obesity therapies like cagrilintide, act on neurons in the brainstem dorsal vagal complex (DVC) that express calcitonin receptors (CALCR). These receptors, often combined with receptor activity-modifying proteins (RAMPs), mediate the suppression of food intake and body weight. To understand the molecular and neural mechanisms of cagrilintide action, we used single-nucleus RNA sequencing to define 89 cell populations across the rat, mouse, and non-human primate caudal brainstem.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Epoxy nanocomposites are widely used in various applications because of their excellent properties. Different types of manufacturing techniques are used to produce epoxy composites based on various fillers, molecular weight, and applications required. The physical properties and chemical structure of epoxy resin help in determining the method for its manufacturing.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Biology Department and Volen Center, MS 013, Brandeis University, Waltham, Massachusetts, United States.
Animals must deal with numerous perturbations, oftentimes concurrently. In this study, we examine the effects of two perturbations, high extracellular potassium and elevated temperature, on the resilience of the pyloric rhythm of the crab, . At control temperatures (11°C), high potassium saline (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!