Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biological nitrogen (N) fixation is a pivotal N source in N-deficient ecosystems. The Qinghai‒Tibet Plateau (QTP) region, which is assumed to be N limited and suboxic, is an ideal habitat for diazotrophs. However, the diazotrophic communities and associated N fixation rates in these high-altitude alpine permafrost QTP rivers remain largely unknown. Herein, we examined diazotrophic communities in the sediment and biofilm of QTP rivers via the nitrogenase (nifH) gene sequencing and assessed their N fixing activities via a N isotope incubation assay. Strikingly, anaerobic heterotrophic diazotrophs, such as sulfate- and iron-reducing bacteria, had emerged as dominant N fixers. Remarkably, the nifH gene abundance and N fixation rates increased with altitude, and the average nifH gene abundance (2.57 ± 2.60 × 10 copies g) and N fixation rate (2.29 ± 3.36 nmol N gd) surpassed that documented in most aquatic environments (nifH gene abundance: 1.31 × 10 ∼ 2.57 × 10 copies g, nitrogen fixation rates: 2.34 × 10 ∼ 4.11 nmol N gd). Such distinctive heterotrophic diazotrophic communities and high N fixation potential in QTP rivers were associated with low-nitrogen, abundant organic carbon and unique C:N:P stoichiometries. Additionally, the significant presence of psychrophilic bacteria within the diazotrophic communities, along with the enhanced stability and complexity of the diazotrophic networks at higher altitudes, clearly demonstrate the adaptability of diazotrophic communities to extreme cold and high-altitude conditions in QTP rivers. We further determined that altitude, coupled with organic carbon and phosphorus, was the predominant driver shaping diazotrophic communities and their N-fixing activities. Overall, our study reveals high N fixation potential in N-deficient QTP rivers, which provides novel insights into nitrogen dynamics in alpine permafrost rivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!