Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) Team grant, we aimed to identify salmon peptide fractions (SPFs) with the potential to mitigate metabolic dysfunction. Additionally, the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon, could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2024-0111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!