Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The use of magnetic resonance (MR) imaging for proton therapy treatment planning is gaining attention as a highly effective method for guidance. At the core of this approach is the generation of computed tomography (CT) images from MR scans. However, the critical issue in this process is accurately aligning the MR and CT images, a task that becomes particularly challenging in frequently moving body areas, such as the head-and-neck. Misalignments in these images can result in blurred synthetic CT (sCT) images, adversely affecting the precision and effectiveness of the treatment planning.
Purpose: This study introduces a novel network that cohesively unifies image generation and registration processes to enhance the quality and anatomical fidelity of sCTs derived from better-aligned MR images.
Methods: The approach synergizes a generation network (G) with a deformable registration network (R), optimizing them jointly in MR-to-CT synthesis. This goal is achieved by alternately minimizing the discrepancies between the generated/registered CT images and their corresponding reference CT counterparts. The generation network employs a UNet architecture, while the registration network leverages an implicit neural representation (INR) of the displacement vector fields (DVFs). We validated this method on a dataset comprising 60 head-and-neck patients, reserving 12 cases for holdout testing.
Results: Compared to the baseline Pix2Pix method with MAE 124.95 30.74 HU, the proposed technique demonstrated 80.98 7.55 HU. The unified translation-registration network produced sharper and more anatomically congruent outputs, showing superior efficacy in converting MR images to sCTs. Additionally, from a dosimetric perspective, the plan recalculated on the resulting sCTs resulted in a remarkably reduced discrepancy to the reference proton plans.
Conclusions: This study conclusively demonstrates that a holistic MR-based CT synthesis approach, integrating both image-to-image translation and deformable registration, significantly improves the precision and quality of sCT generation, particularly for the challenging body area with varied anatomic changes between corresponding MR and CT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.17338 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!