Background: Magnetic resonance-guided radiotherapy with an MR-guided LINAC represents potential clinical benefits in abdominal treatments due to the superior soft-tissue contrast compared to kV-based images in conventional treatment units. However, due to the high cost associated with this technology, only a few centers have access to it. As an alternative, synthetic 4D MRI generation based on artificial intelligence methods could be implemented. Nevertheless, appropriate MRI texture generation from CT images might be challenging and prone to hallucinations, compromising motion accuracy.

Purpose: To evaluate the feasibility of on-board synthetic motion-resolved 4D MRI generation from prior 4D MRI, on-board 4D cone beam CT (CBCT) images, motion modeling information, and deep learning models using the digital anthropomorphic phantom XCAT.

Methods: The synthetic 4D MRI corresponds to phases from on-board 4D CBCT. Each synthetic MRI volume in the 4D MRI was generated by warping a reference 3D MRI (MRI, end of expiration phase from a prior 4D MRI) with a deformation field map (DFM) determined by (I) the eigenvectors from the principal component analysis (PCA) motion-modeling of the prior 4D MRI, and (II) the corresponding eigenvalues predicted by a convolutional neural network (CNN) model using the on-board 4D CBCT images as input. The CNN was trained with 1000 deformations of one reference CT (CT, same conditions as MRI) generated by applying 1000 DFMs computed by randomly sampling the original eigenvalues from the prior 4D MRI PCA model. The evaluation metrics for the CNN model were root-mean-square error (RMSE) and mean absolute error (MAE). Finally, different on-board 4D-MRI generation scenarios were assessed by changing the respiratory period, the amplitude of the diaphragm, and the chest wall motion of the 4D CBCT using normalized root-mean-square error (nRMSE) and structural similarity index measure (SSIM) for image-based evaluation, and volume dice coefficient (VDC), volume percent difference (VPD), and center-of-mass shift (COMS) for contour-based evaluation of liver and target volumes.

Results: The RMSE and MAE values of the CNN model reported 0.012 ± 0.001 and 0.010 ± 0.001, respectively for the first eigenvalue predictions. SSIM and nRMSE were 0.96 ± 0.06 and 0.22 ± 0.08, respectively. VDC, VPD, and COMS were 0.92 ± 0.06, 3.08 ± 3.73 %, and 2.3 ± 2.1 mm, respectively, for the target volume. The more challenging synthetic 4D-MRI generation scenario was for one 4D-CBCT with increased chest wall motion amplitude, reporting SSIM and nRMSE of 0.82 and 0.51, respectively.

Conclusions: On-board synthetic 4D-MRI generation based on predicting actual treatment deformation from on-board 4D-CBCT represents a method that can potentially improve the treatment-setup localization in abdominal radiotherapy treatments with a conventional kV-based LINAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17347DOI Listing

Publication Analysis

Top Keywords

synthetic mri
16
prior mri
16
mri
14
on-board synthetic
12
mri generation
12
cnn model
12
4d-mri generation
12
on-board
8
generation based
8
cbct images
8

Similar Publications

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

NPJ Syst Biol Appl

January 2025

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.

View Article and Find Full Text PDF

Improving quantification accuracy of a nuclear Overhauser enhancement signal at -1.6 ppm at 4.7 T using a machine learning approach.

Phys Med Biol

January 2025

Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, Tennessee, 37232-2102, UNITED STATES.

Objective: A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement.

View Article and Find Full Text PDF

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

Sensors (Basel)

December 2024

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities.

View Article and Find Full Text PDF

Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer's disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial volume effects (PVE). In this study, we propose a novel approach to addressing PVE using a latent diffusion model for resolution recovery (LDM-RR) of PET imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!