Fabrication of High-Density Microarchitected Tungsten via DLP 3D Printing.

Adv Sci (Weinh)

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

Published: October 2024

Current additive manufacturing (AM) techniques for tungsten, such as powder bed fusion and directed energy deposition, often generate parts with rough surfaces. Vat photopolymerization presents a promising alternative for fabricating tungsten structures with high shape fidelity and low surface roughness. However, existing vat photopolymerization approaches suffer from surface defects and low final density, leading to compromised mechanical properties. Therefore, achieving high-density tungsten structures using vat photopolymerization remains a crucial challenge. This work presents a straightforward and reliable method for fabricating complex, micro-architected tungsten structures with superior density and hardness. The approach utilizes a water-based photoresin with exceptional tungsten ion loading capacity. The photoresin is then patterned using digital light processing (DLP) to create tungsten-laden precursors. A three-step debinding and sintering process subsequently achieves 3D tungsten structures with dense surface morphology and minimal internal defects. The microstructures achieve a minimum feature size of 35 µm, a low surface roughness of 2.86 µm, and demonstrate exceptional mechanical properties. This new method for structuring tungsten opens doors to a broad range of applications, including micromachining, collimators, detectors, and metamaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497019PMC
http://dx.doi.org/10.1002/advs.202405487DOI Listing

Publication Analysis

Top Keywords

tungsten structures
16
vat photopolymerization
12
tungsten
8
low surface
8
surface roughness
8
mechanical properties
8
fabrication high-density
4
high-density microarchitected
4
microarchitected tungsten
4
tungsten dlp
4

Similar Publications

An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage.

Nanomicro Lett

December 2024

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.

View Article and Find Full Text PDF

The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO, the impact of different crystal structures on charge storage properties remains largely unexplored.

View Article and Find Full Text PDF

The enthalpy of the oxotransfer reaction of [BuN][WO(mnt)] (where mnt is maleonitriledithiolate) with PPh in an inert atmosphere in an acetonitrile solution was determined by calorimetry. The obtained enthalpy value (-93 ± 5) kJ mol differs from the enthalpy value of the reaction carried out by us earlier under aerobic conditions by (16 ± 9) kJ mol. The obtained results indicate the participation of atmospheric oxygen in the catalytic process.

View Article and Find Full Text PDF

Highly Oriented WS Monolayers for High-Performance Electronics.

Adv Mater

December 2024

School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China.

2D transition-metal dichalcogenide (TMDC) semiconductors represent the most promising channel materials for post-silicon microelectronics due to their unique structure and electronic properties. However, it remains challenging to synthesize wide-bandgap TMDCs monolayers featuring large areas and high performance simultaneously. Herein, highly oriented WS monolayers are reproducibly synthesized through a templated growth strategy on vicinal C/A-plane sapphire wafers.

View Article and Find Full Text PDF

Simulation analysis of 35 MeV high-power electron accelerator driven white neutron source target.

Appl Radiat Isot

December 2024

Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China; Engineering Research Center of Nuclear Technology Application, East China Institute of Technology, Ministry of Education, Nanchang 330013, China. Electronic address:

The white neutron source driven by an electron accelerator utilizes a pulsed electron beam to bombard a target, producing neutrons through photoneutron reactions. The white neutron source of photoneutron reaction has advantages such as compact structure, low cost, capability of generating ultra-short pulse, and wide applications in the resonance energy region, effectively complementing reactor neutron sources and spallation neutron sources. The development of high-current, high-power electron accelerator-driven white neutron sources is of significant importance for neutron science research and nuclear technology applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!