Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ternary content-addressable memory (TCAM) is promising for data-intensive artificial intelligence applications due to its large-scale parallel in-memory computing capabilities. However, it is still challenging to build a reliable TCAM cell from a single circuit component. Here, we demonstrate a single transistor TCAM based on a floating-gate two-dimensional (2D) ambipolar MoTe field-effect transistor with graphene contacts. Our bottom graphene contacts scheme enables gate modulation of the contact Schottky barrier heights, facilitating carrier injection for both electrons and holes. The 2D nature of our channel and contact materials provides device scaling potentials beyond silicon. By integration with a floating-gate stack, a highly reliable nonvolatile memory is achieved. Our TCAM cell exhibits a resistance ratio larger than 1000 and symmetrical complementary states, allowing the implementation of large-scale TCAM arrays. Finally, we show through circuit simulations that in-memory Hamming distance computation is readily achievable based on our TCAM with array sizes up to 128 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c07024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!