Background: For a decade, despite results from many studies, telemedicine systems have suffered from a lack of recommendations for chronic heart failure (CHF) care because of variable study results. Another limitation is the hospital-based architecture of most telemedicine systems. Some systems use an algorithm based on daily weight, transcutaneous oxygen measurement, and heart rate to detect and treat acute heart failure (AHF) in patients with CHF as early on as possible.
Objective: The aim of this study is to determine the efficacy of a telemonitoring system in detecting clinical destabilization in real-life settings (out-of-hospital management) without generating too many false positive alerts.
Methods: All patients self-monitoring at home using the system after a congestive AHF event treated at a cardiology clinic in France between March 2020 and March 2021 with at least 75% compliance on daily measurements were included retrospectively. New-onset AHF was defined by the presence of at least 1 of the following criteria: transcutaneous oxygen saturation loss, defined as a transcutaneous oxygen measurement under 90%; rise of cardiac frequency above 110 beats per minute; weight gain of at least 2 kg; and symptoms of congestive AHF, described over the phone. An AHF alert was generated when the criteria reached our definition of new-onset acute congestive heart failure (HF).
Results: A total of 111 consecutive patients (n=70 men) with a median age of 76.60 (IQR 69.5-83.4) years receiving the telemonitoring system were included. Thirty-nine patients (35.1%) reached the HF warning level, and 28 patients (25%) had confirmed HF destabilization during follow-up. No patient had AHF without being detected by the telemonitoring system. Among incorrect AHF alerts (n=11), 5 patients (45%) had taken inaccurate measurements, 3 patients (27%) had supraventricular arrhythmia, 1 patient (9%) had a pulmonary bacterial infection, and 1 patient (9%) contracted COVID-19. A weight gain of at least 2 kg within 4 days was significantly associated with a correct AHF alert (P=.004), and a heart rate of more than 110 beats per minute was more significantly associated with an incorrect AHF alert (P=.007).
Conclusions: This single-center study highlighted the efficacy of the telemedicine system in detecting and quickly treating cardiac instability complicating the course of CHF by detecting new-onset AHF as well as supraventricular arrhythmia, thus helping cardiologists provide better follow-up to ambulatory patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350300 | PMC |
http://dx.doi.org/10.2196/52648 | DOI Listing |
Curr Cardiol Rep
January 2025
Hasselt University, Faculty of Medicine and Life Sciences / Limburg Clinical Research Centre, Agoralaan, Diepenbeek, Belgium.
Purpose Of Review: This review aims to explore the complex interplay between atrial functional mitral regurgitation (AFMR), atrial fibrillation (AF), and heart failure with preserved ejection fraction (HFpEF). The goal is to define these conditions, examine their underlying mechanisms, and discuss treatment perspectives, particularly addressing diagnostic challenges.
Recent Findings: Recent research highlights the rising prevalence of AFMR, now accounting for nearly one-third of significant mitral regurgitation cases.
JACC Cardiovasc Imaging
January 2025
Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:
Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2025
Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. Electronic address:
Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.
Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).
Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.
Mayo Clin Proc
January 2025
Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea. Electronic address:
Objective: To assess the comparative effectiveness of sodium-glucose cotransporter 2 inhibitors (SGLT2i), thiazolidinediones (TZD), and dipeptidyl peptidase-4 inhibitors (DPP-4i) for the cardiorenal outcomes and mortality in individuals with type 2 diabetes and a prior stroke.
Patients And Methods: Using the Korean National Health Insurance Service database from 2014 to 2021, a new-user cohort was established through propensity score matching for SGLT2i, TZD, and DPP-4i. The primary outcomes were major adverse cardiovascular events (MACE), comprising myocardial infarction, ischemic stroke, and cardiovascular death.
JACC Clin Electrophysiol
December 2024
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:
Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.
Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!