As global freshwater shortages worsen, solar steam generation (SSG) emerges as a promising, eco-friendly, and cost-effective solution for water purification. However, widespread SSG implementation requires efficient photothermal materials and solar evaporators that integrate enhanced light-to-heat conversion, rapid water transportation, and optimal thermal management. This study investigates using nonoxidized graphene flakes (NOGF) with negligible defects as photothermal materials capable of absorbing over 98% of sunlight. By combining NOGF with cellulose nanofibers (CNF) through bidirectional freeze casting, we created a vertically and radially aligned solar evaporator. The hybrid aerogel exhibited exceptional solar absorption, efficient solar-to-thermal conversion, and improved surface wettability. Inspired by tree structures, our design ensures rapid water supply while minimizing heat loss. With low NOGF content (∼10.0%), the NOGF/CNF aerogel achieves a solar steam generation rate of 2.39 kg m h with an energy conversion efficiency of 93.7% under 1-sun illumination, promising applications in seawater desalination and wastewater purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02742 | DOI Listing |
Talanta
January 2025
Instituto de Magnetismo Aplicado, UCM-ADIF, Las Rozas, 28230, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain. Electronic address:
The term graphene-based gas sensors may be too broad, as there are many physicochemical differences within the graphene-based materials (GBM) used for chemiresistive gas sensors. These differences condition the sensitivity, selectivity, recovery, and ultimately the sensing performance of these devices towards air pollutants. Continuous ultraviolet irradiation aids in the desorption of gas molecules and enhances sensor performance.
View Article and Find Full Text PDFNano Lett
August 2024
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
As global freshwater shortages worsen, solar steam generation (SSG) emerges as a promising, eco-friendly, and cost-effective solution for water purification. However, widespread SSG implementation requires efficient photothermal materials and solar evaporators that integrate enhanced light-to-heat conversion, rapid water transportation, and optimal thermal management. This study investigates using nonoxidized graphene flakes (NOGF) with negligible defects as photothermal materials capable of absorbing over 98% of sunlight.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
J Colloid Interface Sci
November 2024
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China. Electronic address:
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (M) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of M.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2023
Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea.
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using aqueous solutions of graphene, single-walled carbon nanotubes, and sodium dodecyl sulfate surfactant. The hybrid films showed excellent electrode properties, such as an optical transmittance of ≥90%, a sheet resistance of ~3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!