Dendrobine (DDB), an alkaloid isolated from the Chinese herb Dendrobium, has antioxidant and anti-inflammatory effects; however, whether DDB reduces oleic acid (OA)-induced lipid accumulation remains unclear. OA-induced lipid accumulation model of HepG2 cells were treated with DDB. Cellular lipid deposition was assessed by Oil Red O (ORO) staining and triglyceride and total cholesterol detection. RNA-Sequencing (RNA-seq), biological function analysis, and transcription factor (TFs) prediction were combined to identify key TF in the DDB-treated OA model. Finally, the roles of FOS and METTL14 were examined using a DDB-induced lipid accumulation model. DDB inhibited OA-induced lipid accumulation. We identified 895 differentially expressed genes (DEGs) that were mainly enriched in various biological processes of lipid synthesis and transport. Four transcription factors (SOX9, MLXIPL, FOS, and JUN) associated with lipid metabolism and FOS levels in the OA-induced lipid accumulation model after DDB treatment had the greatest changes in expression change. Overexpression of FOS alleviates the inhibitory effect of DDB on OA-induced lipid accumulation. METTL14 is a target gene of FOS, and simultaneous interference with METTL14 in cells with high FOS expression restored the alleviating effect of DDB on lipid accumulation. DDB alleviated OA-induced lipid accumulation by inhibiting the FOS/METTL14 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-024-10246-w | DOI Listing |
Pharmaceutics
December 2024
Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
Background/objectives: Colorectal cancer (CRC) is characterized by a high rate of both incidence and mortality, and its treatment outcomes are often affected by recurrence and drug resistance. Ferroptosis, an iron-dependent programmed cell death mechanism triggered by lipid peroxidation, has recently gained attention as a potential therapeutic target. Graphene oxide (GO), known for its oxygen-containing functional groups, biocompatibility, and potential for functionalization, holds promise in cancer treatment.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China.
Rice sheath blight (RSB), caused by the pathogenic fungus , poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan.
Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of exposed to submergence or flooding with physical flow.
View Article and Find Full Text PDFNutrients
December 2024
Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea.
Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India.
: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!