The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-04102-yDOI Listing

Publication Analysis

Top Keywords

sdad pathway
12
aerated cws
12
nitrogen removal
12
passive aerated
8
constructed wetlands
8
nitrogen losses
8
losses systems
8
deep passive
8
cws
7
aerated
6

Similar Publications

Synchronised removal of nitrogen and sulphate from rubber industrial wastewater by coupling of Sulfammox and sulphide-driven autotrophic denitrification in anaerobic membrane bioreactor.

Bioresour Technol

January 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka. Electronic address:

Global rubber industry, growing 4-6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater.

View Article and Find Full Text PDF

Isotope analysis of nitrogen removal pathways and NO production potential in the SDAD-anammox system under different N/S ratios.

Water Res X

September 2024

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

This study explored the impact of varying nitrate to sulfide (N/S) ratios on nitrogen removal efficiency (NRE) in the sulfide-driven autotrophic denitrification and anammox (SDAD-anammox) system. Optimal nitrogen removal was observed at N/S ratios between 1.5 and 2.

View Article and Find Full Text PDF

Two parallel pilot-scale reactors were operated to investigate pollutant removal performance and metabolic pathways in elemental sulfur-driven autotrophic denitrification (SDAD) process under low temperature and after addition of external electron donors. The results showed that low temperature slightly inhibited SDAD (average total nitrogen removal of ∼4.7 mg L) while supplement of sodium thiosulfate (stage 2) and sodium acetate (stage 3) enhanced denitrification and secretion of extracellular polymeric substances (EPS), leading to the average removal rate of 0.

View Article and Find Full Text PDF

The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems.

View Article and Find Full Text PDF

Enhancing nitrogen removal in the partial denitrification/anammox processes for SO - Rich wastewater treatment: Insights into autotrophic and mixotrophic strategies.

J Environ Manage

May 2024

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland. Electronic address:

The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO-dependent systems to produce NO effectively, supporting anaerobic NH oxidation. Additionally, SO served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!