A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic deep learning segmentation of the hippocampus on high-resolution diffusion magnetic resonance imaging and its application to the healthy lifespan. | LitMetric

Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T or T image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.5227DOI Listing

Publication Analysis

Top Keywords

high-resolution diffusion
12
manual segmentation
12
deep learning
8
segmentation hippocampus
8
diffusion magnetic
8
magnetic resonance
8
resonance imaging
8
dti protocol
8
limited brain
8
brain coverage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!