Organic-inorganic hybrid perovskites have attracted significant attention for optoelectronic applications due to their efficient photoconversion properties. However, grain boundaries and irregular crystal orientations in polycrystalline films remain issues. This study presents a method for producing crystalline-orientation-controlled perovskite single-crystal films using retarded solvent evaporation. It is shown that single-crystal films, grown via inverse temperature crystallization within a confined space, exhibit enhanced optoelectronic property. Using interfacial polymer layer, this method produces high-quality perovskite single-crystalline films with varying crystal orientations. Density functional theory calculations confirm favorable adsorption energies for (110) surfaces with methylammonium iodide and PbI terminations on poly(3-hexylthiophene), and stronger adsorption for (224) surfaces with I and methylammonium terminations on polystyrene, influenced by repulsive forces between the thiophene group and the perovskite surface. The correlation between charge transport characteristics and perovskite single-crystalline properties highlights potential advancements in perovskite optoelectronics, improving device performance and reliability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404958DOI Listing

Publication Analysis

Top Keywords

crystal orientations
8
single-crystal films
8
perovskite single-crystalline
8
surfaces methylammonium
8
perovskite
6
films
5
interfacial engineering
4
engineering controlled
4
controlled crystal
4
crystal mosaicity
4

Similar Publications

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.

View Article and Find Full Text PDF

In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve.

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!