Fabrication of Scalable Covalent Organic Framework Membrane-based Electrolytes for Solid-State Lithium Metal Batteries.

Angew Chem Int Ed Engl

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.

Published: December 2024

The conventional covalent organic framework (COF)-based electrolytes with tailored ionic conducting behaviors are typically fabricated in the powder morphology, requiring further compaction procedures to operate as solid electrolyte tablets, which hinders the large-scale manufacturing of COF materials. In this study, we present a feasible electrospinning strategy to prepare scalable, self-supporting COF membranes (COMs) that feature a rigid COF skeleton bonded with flexible, lithiophilic polyethylene glycol (PEG) chains, forming an ion conduction network for Li transport. The resulting PEG-COM electrolytes exhibit enhanced dendrite inhibition and high ionic conductivity of 0.153 mS cm at 30 °C. The improved Li conduction in PEG-COM electrolytes stems from the loose ion pairing in the structure and the production of higher free Li content, as confirmed by solid-state Li NMR experiments. These changes in the local microenvironment of Li facilitate its directional movement within the COM pores. Consequently, solid-state symmetrical Li|Li, Li|LFP, and pouch cells demonstrate excellent electrochemical performance at 60 °C. This strategy offers a universal approach for constructing scalable COM-based electrolytes, thereby broadening the practical applications of COFs in solid-state lithium metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202411535DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic framework
8
solid-state lithium
8
lithium metal
8
metal batteries
8
peg-com electrolytes
8
electrolytes
5
fabrication scalable
4
scalable covalent
4
framework membrane-based
4

Similar Publications

Hydroxylated magnetic microporous organic network for efficient magnetic solid phase extraction of trace triazine herbicides.

J Chromatogr A

December 2024

College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:

Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.

View Article and Find Full Text PDF

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO Photoreduction.

Macromol Rapid Commun

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!