A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spinal nerve transection-induced upregulation of KDM4A in the dorsal root ganglia contributes to the development and maintenance of neuropathic pain via promoting CCL2 expression in rats. | LitMetric

AI Article Synopsis

  • * After spinal nerve transection (SNT) in rats, both KDM4A and CCL2 levels rose in the affected dorsal root ganglia (DRG), indicating their involvement in pain mechanisms.
  • * Treatment with KDM4A shRNA led to reduced pain sensitivity and decreased CCL2 levels, suggesting that targeting KDM4A could be a potential strategy for managing neuropathic pain by modulating CCL2 expression.

Article Abstract

Studies indicate that the lysine-specific demethylase 4A (KDM4A), acts as a key player in neuropathic pain, driving the process through its involvement in promoting neuroinflammation. Emerging evidence reveals that C-C Motif Chemokine Ligand 2 (CCL2) participates in neuroinflammation, which plays an important role in the development and maintenance of neuropathic pain. However, it remains unclear if KDM4A plays a role in regulating CCL2 in neuropathic pain. This study found that following spinal nerve transection (SNT) of the lumbar 5 nerve root in rats, the expression of KDM4A and CCL2 increased in the ipsilateral L4/5 dorsal root ganglia (DRG). Injecting KDM4A siRNA into the DRGs of rats post-SNT resulted in a higher paw withdrawal threshold (PWT) and paw-withdrawal latency (PWL) compared to the KDM4A scRNA group. In addition, prior microinjection of AAV-EGFP-KDM4A shRNA also alleviates the decrease in PWT and PWL caused by SNT. Correspondingly, microinjection of AAV-EGFP-KDM4A shRNA subsequent to SNT reduced the established mechanical and thermal hyperalgesia. Furthermore, AAV-EGFP-KDM4A shRNA injection decreased the expression of CCL2 in DRGs. ChIP-PCR analysis revealed that increased binding of p-STAT1 with the CCL2 promoter induced by SNT was inhibited by AAV-EGFP-KDM4A shRNA treatment. These findings suggest that KDM4A potentially influences neuropathic pain by regulating CCL2 expression in DRGs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.16491DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
20
aav-egfp-kdm4a shrna
16
spinal nerve
8
dorsal root
8
root ganglia
8
development maintenance
8
maintenance neuropathic
8
ccl2 expression
8
plays role
8
regulating ccl2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!