Liposomal formulations of antibiotics for inhalation offer the potential for the delivery of high drug doses, controlled drug release kinetics in the lung, and an excellent safety profile. In this study, we evaluated the performance of a liposomal formulation for the poorly soluble, antituberculosis agent, bedaquiline. Bedaquiline was encapsulated within monodisperse liposomes of ∼70 nm at a relatively high drug concentration (∼3.6 mg/mL). Formulations with or without fucose residues, which bind to C-type lectin receptors and mediate a preferential binding to macrophage mannose receptor, were prepared, and efficacy was assessed in an C3HeB/FeJ mouse model of tuberculosis infection (H37Rv strain). Seven intranasal instillations of 5 mg/kg bedaquiline formulations administered every second day resulted in a significant reduction in lung burden (∼0.4-0.6 Δlog CFU), although no differences between fucosylated and nonfucosylated formulations were observed. A pharmacokinetic study in healthy, noninfected Balb/c mice demonstrated that intranasal administration of a single dose of 2.5 mg/kg bedaquiline liposomal formulation (fucosylated) improved the lung bioavailability 6-fold compared to intravenous administration of the same formulation at the same dose. Importantly, intranasal administration reduced systemic concentrations of the primary metabolite, -desmethyl-bedaquiline (M2), compared with both intravenous and oral administration. This is a clinically relevant finding as the M2 metabolite is associated with a higher risk of QT-prolongation in predisposed patients. The results clearly demonstrate that a bedaquiline liposomal inhalation suspension may show enhanced antitubercular activity in the lung while reducing systemic side effects, thus meriting further nonclinical investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406518PMC
http://dx.doi.org/10.1021/acsinfecdis.4c00192DOI Listing

Publication Analysis

Top Keywords

intranasal administration
12
systemic side
8
side effects
8
high drug
8
liposomal formulation
8
mg/kg bedaquiline
8
bedaquiline liposomal
8
compared intravenous
8
bedaquiline
5
intranasal
4

Similar Publications

Poor aqueous solubility and bioavailability limit the translation of new drug candidates into clinical applications. Nanocrystal formulations offer a promising approach for improving the dissolution rate and saturation solubility. These formulations are applicable for various routes of administration, with each presenting unique opportunities and challenges posed by the physiological barriers.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Intranasally administrated fusion-inhibitory lipopeptides block SARS-CoV-2 infection in mice and enable long-term protective immunity.

Commun Biol

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.

We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Due to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!