Skeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449447 | PMC |
http://dx.doi.org/10.1242/dmm.050914 | DOI Listing |
Exp Physiol
January 2025
Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.
View Article and Find Full Text PDFDevelopment
January 2025
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional novel requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA.
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (Nas), Na1.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, 84112.
The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!