Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biomechanics associated with human running are affected by gender and speed. Knowledge regarding ground reaction force (GRF) at various running speeds is pivotal for the prevention of injuries related to running. This study aimed to investigate the gait pattern differences between males and females while running at different speeds, and to verify the relationship between GRFs and running speed among both males and females. GRF data were collected from forty-eight participants (thirty male runners and eighteen female runners) while running on an overground runway at seven discrete speeds: 10, 11, 12, 13, 14, 15 and 16 km/h. The ANOVA results showed that running speed had a significant effect ( < 0.05) on GRFs, propulsive and vertical forces increased with increasing speed. An independent t-test also showed significant differences ( < 0.05) in vertical and anterior-posterior GRFs at all running speeds, specifically, female runners demonstrated higher propulsive and vertical forces than males during the late stance phase of running. Pearson correlation and stepwise multiple linear regression showed significant correlations between running speed and the GRF variables. These findings suggest that female runners require more effort to keep the same speed as male runners. This study may provide valuable insights into the underlying biomechanical factors of the movement patterns at GRFs during running.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317262 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1378284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!