Objective: Epidermolysis bullosa simplex (EBS) is a common, well-characterized type of epidermolysis bullosa. However, some rare syndromic EBS phenotypes are not well described. The accumulation of clinical descriptions of patients with syndromic subtypes of EBS is important for understanding the natural history of the disease and assessing genotype-phenotype correlations.

Case Summary: We present a series of case reports of the syndromic subtype of EBS associated with mutations in the gene in seven patients from four unrelated families. The clinical features of this rare phenotype in children and adult patients are described in detail. In two families, we revealed pathogenic variant c.1A > G (p.Met1?) in the gene. The third family had c.3G > A (p.Met1?) mutation, and the fourth family had a novel variant c.23del (p.Arg8AsnfsTer2).

Conclusion: The description of the clinical manifestations of the disease in two generations of EBS families with different genetic variants allows the assessment and prediction of the natural course and severity of the disease in these families, the risk of complications, and the planning of the amount of medical care necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318278PMC
http://dx.doi.org/10.3389/fmed.2024.1418239DOI Listing

Publication Analysis

Top Keywords

epidermolysis bullosa
12
bullosa simplex
8
mutations gene
8
series case
8
case reports
8
families
5
ebs
5
syndromic
4
syndromic epidermolysis
4
simplex subtype
4

Similar Publications

Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa.

Dev Cell

January 2025

Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA. Electronic address:

Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure.

View Article and Find Full Text PDF

Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic disorder due to pathogenic variants in the COL7A1 gene. In this study we determined the association between different categories of COL7A1 variants and clinical disease severity in 236 RDEB patients in North America. Published reports or in-silico predictions were used to assess the impact of pathogenic variants in COL7A1 on type VII collagen (C7) protein function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!