AI Article Synopsis

Article Abstract

Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives. In particular, ligands 04 and 07 exhibited a higher binding affinity with values of -9.9 kcal/mol and -9.1 kcal/mol, respectively, than the standard drug epirubicin hydrochloride, which had a binding affinity of -8.2 kcal/mol. The stability of the ligand-protein complexes was further confirmed by MD simulations over a 100-ns trajectory, which included assessments of hydrogen bonds, root mean square deviation (RMSD), root mean square Fluctuation (RMSF), dynamic cross-correlation matric (DCCM) and principal component analysis. The study emphasizes the need for experimental validation to confirm the therapeutic utility of these compounds. This study enhances the computational search for new BC drugs and establishes a solid foundation for subsequent experimental and clinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319393PMC
http://dx.doi.org/10.1111/jcmm.18584DOI Listing

Publication Analysis

Top Keywords

binding affinity
12
breast cancer
8
17beta-hydroxysteroid dehydrogenase
8
dehydrogenase type
8
type 17beta-hsd1
8
root square
8
silico analysis
4
analysis potential
4
potential inhibitors
4
inhibitors breast
4

Similar Publications

Unlabelled: This study investigated the anticancer phytocompounds in leaf extracts of Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.

View Article and Find Full Text PDF

Unlabelled: The present study evaluated the effects of 5-methyltetrahydrofolate (5-MTHF) and aqueous extract on diabetes. An in silico docking study with select bioactive compounds showed strong binding affinities of folates with glucose metabolism-related proteins. In vitro assay showed 5-MTHF's superior inhibitory activity on alpha-amylase compared to folic acid.

View Article and Find Full Text PDF

Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.

View Article and Find Full Text PDF

Group-equivariant neural networks have emerged as an efficient approach to model complex data, using generalized convolutions that respect the relevant symmetries of a system. These techniques have made advances in both the supervised learning tasks for classification and regression, and the unsupervised tasks to generate new data. However, little work has been done in leveraging the symmetry-aware expressive representations that could be extracted from these approaches.

View Article and Find Full Text PDF

Although glycosidic bonds in purines typically involve the N9 position, the chemical synthesis of adenosine produces N7-ribofuranosyladenine (7A) as a kinetically favorable ribosylation product. Similarly, in the synthesis of LNA-adenosine (AL), a minor product, N7-LNA-adenosine (7AL), is observed. While extensive research has focused on investigating the properties of N9-regioisomers of adenosine, 7A has been largely overlooked and considered as a side-product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!