A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

G-Quadruplex RNA Based PROTAC Enables Targeted Degradation of RNA Binding Protein FMRP for Tumor Immunotherapy. | LitMetric

G-Quadruplex RNA Based PROTAC Enables Targeted Degradation of RNA Binding Protein FMRP for Tumor Immunotherapy.

Angew Chem Int Ed Engl

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China.

Published: November 2024

Fragile X mental retardation protein (FMRP), an RNA binding protein (RBP), is aberrantly hyper-expressed in human tumors and plays an essential role in tumor invasion, metastasis and immune evasion. However, there is no small-molecule inhibitor for FMRP so far. In this study, we developed the first FMRP-targeting degrader based on PROteolysis TArgeting Chimera (PROTAC) technology and constructed a heterobifunctional PROTAC through linking a FMRP-targeting G-quadruplex RNA (sc1) to a von Hippel-Lindau (VHL)-targeting ligand peptide (named as sc1-VHLL). Sc1-VHLL specifically degraded endogenous FMRP via ubiquitination pathway in both mouse and human cancer cells. The FMRP degradation significantly changed the secretion pattern of cancer cells, resulting in higher expression of pro-inflammatory cytokine and smaller amounts of immunomodulatory contents. Furthermore, sc1-VHLL, when encapsulated into ionizable liposome nanoparticles (LNP), efficiently targeted tumor site and degraded FMRP in cancer cells. In CT26 tumor-bearing mouse model, FMRP degradation within tumors substantially promoted the infiltration of lymphocytes and CD8 T cells and reduced the proportion of T cells, reshaping the proinflammatory tumor microenvironment and accordingly transforming cold tumor into hot tumor. When combined with immune checkpoint blockade (ICB) therapy, sc1-VHLL based treatment remarkably inhibited the tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202402715DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
g-quadruplex rna
8
rna binding
8
binding protein
8
protein fmrp
8
fmrp degradation
8
fmrp
7
tumor
7
cells
5
rna based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!