LINC00460/miR-186-3p/MYC feedback loop facilitates colorectal cancer immune escape by enhancing CD47 and PD-L1 expressions.

J Exp Clin Cancer Res

Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.

Published: August 2024

Background: Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated.

Methods: LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop.

Conclusions: The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321182PMC
http://dx.doi.org/10.1186/s13046-024-03145-1DOI Listing

Publication Analysis

Top Keywords

immune escape
16
crc cell
12
cell immune
12
crc
11
linc00460/mir-186-3p/myc feedback
8
feedback loop
8
colorectal cancer
8
cd47 pd-l1
8
linc00460
8
linc00460 crc
8

Similar Publications

Cancer Stem Cell and Tumor Immune Microenvironment (TIME): Dangerous Crosstalk.

Curr Mol Med

January 2025

Medical Laboratory Technology Department, Beirut Arab University, Beirut, Lebanon.

Cancer stem cells (CSCs) are the key drivers of tumorigenesis and relapse. A growing body of evidence reveals the tremendous power of CSCs to directly resist innate and adaptive anti-tumor immune responses. The immunomodulatory property gives CSCs the ability to control the tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Copper homeostasis; A rapier between mycobacteria and macrophages.

FASEB Bioadv

January 2025

Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan Guangdong China.

Copper is a vital trace element crucial for mediating interactions between and macrophages. Within these immune cells, copper modulates oxidative stress responses and signaling pathways, enhancing macrophage immune functions and facilitating clearance. Conversely, copper may promote escape from macrophages through various mechanisms: inhibiting macrophage activity, diminishing phagocytic and bactericidal capacities, and supporting survival and proliferation.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.

Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.

View Article and Find Full Text PDF

The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!