A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sucrose as an electron source for cofactor regeneration in recombinant Escherichia coli expressing invertase and a Baeyer Villiger monooxygenase. | LitMetric

Background: The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer-Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon.

Results: Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer-Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U g was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U g. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm.

Conclusions: Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318132PMC
http://dx.doi.org/10.1186/s12934-024-02474-2DOI Listing

Publication Analysis

Top Keywords

electron source
12
coli Δcscr
12
bl21 de3
12
sucrose electron
8
cofactor regeneration
8
coli
8
expressing invertase
8
regeneration redox
8
redox cofactors
8
coli bl21
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!