Zinc oxide nanoparticles (ZnO NPs) have wide applications in daily life. Therefore, there is growing interest in the potential harmful impacts of these particles on human health. The present study was conducted to investigate the potential toxic effects of ZnO NPs (40 and 70 nm) compared to ZnO on the testes of rats. ZnO NPs were synthesized and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Adult male rats were randomly divided into four groups (n = 8): Group I (control), Group II (ZnO) received daily oral administration of ZnO (50 mg/kg), and Groups III and IV received daily oral administration of ZnO NPs of 40 nm or 70 nm at 50 mg/kg, respectively. All treatments continued for 50 consecutive days. ZnO and ZnO NPs reduced body and testis weights, sperm count and motility, serum luteinizing hormone (LH) and testosterone levels, testicular cytochrome p450 17A1 (CYP17A1) and cytochrome p450 1B1 (CYP1B1) concentrations, and the expression of p53 and cdk1. These treatments elevated testicular myeloperoxidase and serum acid phosphatase activities as well as sperm abnormalities. ZnO NPs reduced LH levels, which decreased CYP17A1 and CYP1B1, resulting in reduced synthesis of testosterone. ZnO NPs enhanced testicular inflammation and reduced cell viability. All these effects were manifested as reduced sperm motility and increased sperm deformities. Compared to macromolecules, nanoparticles exhibited significantly higher toxicity. The larger diameter ZnO NPs had more profound toxicity than the smaller-sized particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-024-04330-1 | DOI Listing |
Plants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.
One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia. Electronic address:
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!