Neuropteran larvae are fierce predators that use venom to attack and feed on arthropod prey. Neuropterans have adapted to diverse and sometimes extreme habitats, suggesting their venom may have evolved accordingly, but the ecology and evolution of venom deployment in different families is poorly understood. We applied spatial transcriptomics, proteomics, morphological analysis, and bioassays to investigate the venom systems in the antlion Euroleon nostras and the lacewing Chrysoperla carnea, which occupy distinct niches. Although the venom system morphology was similar in both species, we observed remarkable differences at the molecular level. E. nostras produces particularly complex venom secreted from three different glands, indicating functional compartmentalization. Furthermore, E. nostras venom and digestive tissues were devoid of bacteria, strongly suggesting that all venom proteins are of insect origin rather than the products of bacterial symbionts. We identified several toxins exclusive to E. nostras venom, including phospholipase A2 and several undescribed proteins with no homologs in the C. carnea genome. The compositional differences have significant ecological implications because only antlion venom conferred insecticidal activity, indicating its use for the immobilization of large prey. Our results indicate that molecular venom evolution plays a role in the adaptation of antlions to their unique ecological niche.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319779 | PMC |
http://dx.doi.org/10.1038/s42003-024-06666-9 | DOI Listing |
Sci Rep
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.
View Article and Find Full Text PDFOpen Vet J
November 2024
Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
Background: Pain and inflammation are closely associated with rheumatoid arthritis (RA), which affects the bones and joints.
Aim: While there are a number of therapeutic options for arthritis, their side effects restrict their use and encourage the search for alternative, natural remedies.
Methods: In male rats, we examined the anti-inflammatory and anti-arthritic properties of venom (NHV).
Open Vet J
November 2024
Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
Background: Snake venoms are mainly composed of a mixture of proteins and peptides with antiviral activity against several viruses including HIV. Therefore, snake venoms represent a promising source for new antiviral drugs.
Aim: The study examines the toxin's capacity to disrupt the spike glycoprotein of HIV, the virus accountable for the HIV epidemic.
World Allergy Organ J
December 2024
Department of Pediatrics, Pediatric Allergy and Pulmonology Unit, University of Chieti-Pescara, Chieti, Italy.
Basophilic granulocytes, containing and releasing histamine after a specific allergy stimulation, are directly involved in IgE-mediated allergic reactions. CD63 is a transmembrane protein of secretory lysosomes of basophils and its upregulation is related with the release of histamine to the extracellular space during IgE-mediated allergic reactions. Basophil activation test (BAT) measures the activation of circulating basophils upon the stimulation of living blood cells with specific allergens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!