Monkeypox (Mpox), a zoonotic illness triggered by the monkeypox virus (MPXV), poses a significant threat since it may be transmitted and has no cure. This work introduces a computational method to predict Protein-Protein Interactions (PPIs) during MPXV infection. The objective is to discover prospective drug targets and repurpose current potential Food and Drug Administration (FDA) drugs for therapeutic purposes. In this work, ensemble features, comprising 2-5 node graphlet attributes and protein composition-based features are utilized for Deep Learning (DL) models to predict PPIs. The technique that is used here demonstrated an excellent prediction performance for PPI on both the Human Integrated Protein-Protein Interaction Reference (HIPPIE) and MPXV-Human PPI datasets. In addition, the human protein targets for MPXV have been identified accurately along with the detection of possible therapeutic targets. Furthermore, the validation process included conducting docking research studies on potential FDA drugs like Nicotinamide Adenine Dinucleotide and Hydrogen (NADH), Fostamatinib, Glutamic acid, Cannabidiol, Copper, and Zinc in DrugBank identified via research on drug repurposing and the Drug Consensus Score (DCS) for MPXV. This has been achieved by employing the primary crystal structures of MPXV, which are now accessible. The docking study is also supported by Molecular Dynamics (MD) simulation. The results of our study emphasize the effectiveness of using ensemble feature-based PPI prediction to understand the molecular processes involved in viral infection and to aid in the development of repurposed drugs for emerging infectious diseases such as, but not limited to, Mpox. The source code and link to data used in this work is available at: https://github.com/CMATERJU-BIOINFO/In-Silico-Drug-Repurposing-Methodology-To-Suggest-Therapies-For-Emerging-Threats-like-Mpox .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319331PMC
http://dx.doi.org/10.1038/s41598-024-69617-8DOI Listing

Publication Analysis

Top Keywords

drug repurposing
8
fda drugs
8
drug
5
mpxv
5
computational analysis
4
analysis pathogen-host
4
pathogen-host interactome
4
interactome fast
4
fast low-risk
4
low-risk in-silico
4

Similar Publications

Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites.

View Article and Find Full Text PDF

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.

View Article and Find Full Text PDF

Bacterial biofilms represent a formidable challenge in the treatment of chronic wounds, largely because of their resistance to conventional antibiotics. The emergence of multidrug-resistant (MDR) bacterial strains exacerbates this issue, necessitating a shift towards exploring alternative therapeutic approaches. In response to this urgent need, there has been a surge in research efforts aimed at identifying effective non-antibiotic treatments.

View Article and Find Full Text PDF

Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!